清北学堂模拟赛d2t1 一道图论神题(god)
题目描述
LYK有一张无向图G={V,E},这张无向图有n个点m条边组成。并且这是一张带权图,只有点权。
LYK想把这个图删干净,它的方法是这样的。每次选择一个点,将它删掉,但删这个点是需要代价的。假设与这个点相连的还没被删掉的点是u1,u2,…,uk。LYK将会增加a[u1],a[u2],…,a[uk]的疲劳值。
它想将所有点都删掉,并且删完后自己的疲劳值之和最小。你能帮帮它吗?
输入格式(god.in)
第一行两个数n,m表示一张n个点m条边的图。
第二行n个数ai表示点权。
接下来m行每行三个数u,v,表示有一条连接u,v的边。数据保证任意两个点之间最多一条边相连,并且不存在自环。
输出格式(god.out)
你需要输出这个最小疲劳值是多少。
输入样例
4 3
10 20 30 40
1 4
1 2
2 3
输出样例
40
样例解释
一个合理的方法是先删4号点,此时有10点疲劳值。接下来删3号点,获得20点疲劳值,再删2号点,获得10点疲劳值,最后删1号点,没有疲劳值。总计40点疲劳值。
对于30%的数据n<=10。
对于60%的数据n,m<=1000。
对于100%的数据1<=n,m,ai<=100000
分析:样例给的太明显,每次先删权值最大的点,其实也很好证明,把删点转化成删边,定义一条边的边权为一对点后删的点的点权,最后每条边都是要被删掉的,先删掉点权最大的点就能尽可能地让其它点权比较大的点不被计入贡献,在统计答案的时候不需要一个点一个点地去扩展,枚举每一条边,边上两个点的权值的最小值就是这条边的贡献.
很多时候点权都可以转化为边权来思考,就能应用上许多模型.
#include <bits/stdc++.h> using namespace std; int n,m,a[];
long long ans; int main()
{
scanf("%d%d",&n,&m);
for (int i = ; i <= n; i++)
scanf("%d",&a[i]);
for (int i = ; i <= m; i++)
{
int u,v;
scanf("%d%d",&u,&v);
ans += min(a[u],a[v]);
}
printf("%lld\n",ans); return ;
}
清北学堂模拟赛d2t1 一道图论神题(god)的更多相关文章
- 清北学堂模拟赛d1t4 一道图论好题(graph)
题目描述 LYK有一张无向图G={V,E},这张无向图有n个点m条边组成.并且这是一张带权图,不仅有边权还有点权. LYK给出了一个子图的定义,一张图G’={V’,E’}被称作G的子图,当且仅当 ·G ...
- 清北学堂模拟赛d6t3 反击数
分析:显然是一道数位dp题,不过需要一些奇怪的姿势.常规的数位dp能统计出一个区间内满足条件的数的个数,可是我们要求第k个,怎么办呢?转化为经典的二分问题,我们二分当前数的大小,看它是第几大的,就可以 ...
- 清北学堂模拟赛day7 数字碰撞
/* clj:水题别人都满分你不是你就完了,所以说水题一定要细心一点,有这么几个细节:①前导零的处理,全是零的时候要特判②换行要注意,不要多大一行,剩下就是水水的模拟了 */ #include< ...
- 清北学堂模拟赛d2t6 分糖果(candy)
题目描述总共有n颗糖果,有3个小朋友分别叫做L,Y,K.每个小朋友想拿到至少k颗糖果,但这三个小朋友有一个共同的特点:对3反感.也就是说,如果某个小朋友拿到3颗,13颗,31颗,333颗这样数量的糖果 ...
- 清北学堂模拟赛d2t4 最大值(max)
题目描述LYK有一本书,上面有很多有趣的OI问题.今天LYK看到了这么一道题目:这里有一个长度为n的正整数数列ai(下标为1~n).并且有一个参数k.你需要找两个正整数x,y,使得x+k<=y, ...
- 清北学堂模拟赛d2t2 位运算2(bit)
题目描述LYK拥有一个十进制的数N.它赋予了N一个新的意义:不考虑N的符号,将N每一位都拆开来后再加起来就是N所拥有的价值.例如数字123拥有6的价值,数字999拥有27的价值,数字-233拥有8的价 ...
- 清北学堂模拟赛d1t6 或和异或(xor)
题目描述 LYK最近在研究位运算,它研究的主要有两个:or和xor.(C语言中对于|和^) 为了更好的了解这两个运算符,LYK找来了一个2^n长度的数组.它第一次先对所有相邻两个数执行or操作,得到一 ...
- 清北学堂模拟赛d5t6 cube
题面有误!10,11,12操作类别为A,13,14,15类别为B,16,17,18类别为C. 分析:一道大暴力,每次记录一下走了多少步,上一步操作类别是啥就可以了.最后只需要写6种操作,每一次操作进行 ...
- 清北学堂模拟赛d3t2 b
分析:一道比较让人头疼的数学题. 先考虑怎么让分出来的三角形相似,先不考虑每个三角形的具体边长,设每个三角形的周长为li,则可知必然有一个数g = gcd{li},每一个三角形的周长都是g的倍数,这样 ...
随机推荐
- [luogu4735]最大异或和
https://zybuluo.com/ysner/note/1238161 题面 给定一个初始长度为\(N\)的非负整数序列\(\{a\}\). 有\(m\)个操作,操作分为两种: 在序列末尾加一个 ...
- JZOJ 5791 阶乘 —— 因数
题目:https://jzoj.net/senior/#main/show/5791 题意:有n个正整数a[i],设它们乘积为p,你可以给p乘上一个正整数q,使p*q刚好为正整数m的阶乘,求m的最小值 ...
- PCB CE工具取Genesis JOB与STEP内存地址 方法分享
今天无意中在硬盘上找到了<CE工具取Genesis JOB与STEP内存地址 >视频, 这是2013年初由郭兄(永明)远程时录制的一段视频,特别感谢郭兄指引与帮助, 想当初要不是你推出全行 ...
- yii登陆中添加验证码
1.在SiteController中添加如下代码: /** * Declares class-based actions. */ public function actions() { return ...
- HyperLedger Fabric部署与链码解读
1.Fabric简介 Fabric是超级账本中的一个项目,用以推进区块链技术.和其他区块链类似,它也有一个账本,使用智能合约,且是一个参与者可以分别管理自身交易的系统.它是一个联盟链.Fabric与其 ...
- 巴什博弈------最少取件数 不是1的情况下 hdu---2897
最少取件数 是1的时候 核心代码是 // 共有 n 见 物品 一次最少取 一个 最多取 m 个 )==) printf("先取者输"); 在代码中 可以看到 题目中 一共 ...
- ZOJ1969-Hard to Believe, but True!
import re while True: x = raw_input() if(x == '0+0=0'): print 'True' break a,b,c = re.split('[+=]', ...
- JAVA小记(一)
java中向上转型.向下转型.内部类中所需注意的问题: 向上转型与向下转型: 举个例子:有2个类,Father是父类,Son类继承自Father. Father f1 = new Son(); / ...
- python 生成器函数.推导式.生成器表达式
一.生成器 什么是生成器,生成器的实质就是迭代器 在python中有三种方式来获取生成器: 1.通过生成器函数 2.通过各种推导式来实现生成器 3.通过数据的转换也可以获取生成器 1 def func ...
- post提交表单的数据查看方式(不是很理解,但要会看,可以找人商讨下,比如崔老师,自己再看一遍HTTP基础)