poj--3169--Layout(简单差分约束)
|
Layout
Description
Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they
can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints. Input
Line 1: Three space-separated integers: N, ML, and MD.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart. Output
Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.
Sample Input 4 2 1 Sample Output 27 Hint
Explanation of the sample:
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27. Source |
[Submit] [Go Back] [Status]
[Discuss]
#include<cstdio>
#include<cstring>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std;
#define MAXN 1010
#define MAXM 1000000+10
#define INF 10000000+10
int head[MAXN],dist[MAXN],used[MAXN],vis[MAXN];
int n,x,y,cnt;
struct node
{
int u,v,val;
int next;
}edge[MAXM];
void init()
{
memset(head,-1,sizeof(head));
cnt=0;
}
void add(int u,int v,int val)
{
node E={u,v,val,head[u]};
edge[cnt]=E;
head[u]=cnt++;
}
void getmap()
{
for(int i=1;i<n;i++)
add(i+1,i,0);
int a,b,c;
while(x--)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
while(y--)
{
scanf("%d%d%d",&a,&b,&c);
add(b,a,-c);
}
}
void SPFA()
{
queue<int> Q;
for(int i = 1; i <= n; i++)
{
dist[i] = i==1 ? 0 : INF;
vis[i] = false;
used[i] = 0;
}
// memset(vis,0,sizeof(vis));
// memset(dist,INF,sizeof(dist));
// memset(used,0,sizeof(used));
// dist[1]=0;
used[1] = 1;
vis[1] = 1;
Q.push(1);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
vis[u] = 0;
for(int i = head[u]; i != -1; i = edge[i].next)
{
node E = edge[i];
if(dist[E.v] > dist[u] + E.val)
{
dist[E.v] = dist[u] + E.val;
if(!vis[E.v])
{
vis[E.v] = 1;
used[E.v]++;
if(used[E.v] > n)
{
printf("-1\n");
return ;
}
Q.push(E.v);
}
}
}
}
if(dist[n] == INF)
printf("-2\n");
else
printf("%d\n", dist[n]);
}
int main()
{
while(scanf("%d%d%d",&n,&x,&y)!=EOF)
{
init();
getmap();
SPFA();
}
return 0;
}
poj--3169--Layout(简单差分约束)的更多相关文章
- (简单) POJ 3169 Layout,差分约束+SPFA。
Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...
- POJ 3169 Layout (spfa+差分约束)
题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...
- poj 3169 Layout(差分约束+spfa)
题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...
- poj 3169 Layout (差分约束)
3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...
- POJ 3169 Layout 【差分约束】+【spfa】
<题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...
- POJ 3169 Layout(差分约束+最短路)题解
题意:有一串数字1~n,按顺序排序,给两种要求,一是给定u,v保证pos[v] - pos[u] <= w:二是给定u,v保证pos[v] - pos[u] >= w.求pos[n] - ...
- poj 3169 Layout(差分约束)
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6549 Accepted: 3168 Descriptio ...
- POJ 3167 Layout(差分约束)
题面 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...
- POJ 3169 Layout (差分约束系统)
Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...
- O - Layout(差分约束 + spfa)
O - Layout(差分约束 + spfa) Like everyone else, cows like to stand close to their friends when queuing f ...
随机推荐
- Mysql数据库概述
阅读目录 引擎介绍 表介绍 创建表 查看表结构 mysql中的数据类型 表的完整性约束 修改表结构 删除表 多表结构的创建与分析 练习 返回顶部 引擎介绍 mysql中的存储引擎(https://ww ...
- Super超级ERP系统---(2)基础信息管理
这一节我我们来了解下super系统的基础信息模块有哪些功能以及怎么实现.任何功能再强大的系统,也需要基本信息来支撑.超级erp系统的基础信息主要有供应商管理,品牌管理,分类管理,商品管理几个模块构成. ...
- 第7章 性能和可靠性模式 Server Clustering(服务器群集)
上下文 您正在设计要部署应用程序的基础结构层.运行要求包括无法满足的可用性或性能能力,因为基础结构中存在性能瓶颈或故障单点. 影响因素 设计基础结构时,请考虑下列影响因素: 用户希望在使用应用程序时这 ...
- 12) 十分钟学会android--APP通信传递消息之简单数据传输
程序间可以互相通信是Android程序中最棒的功能之一.当一个功能已存在于其他app中,且并不是本程序的核心功能时,完全没有必要重新对其进行编写. 本章节会讲述一些通在不同程序之间通过使用Intent ...
- Ecshop 扯淡问题
1:解决 :在 temp 文件下创建 backup文件夹 修改权限 2:待补充...
- CentOS7 使用 firewalld 打开关闭 防火墙 与 端口!!
1.firewalld的基本使用 启动: systemctl start firewalld 关闭: systemctl stop firewalld 查看状态: systemctl status f ...
- MongoDB_聚合
MongoDB提供以下聚合工具来对数据进行操作:聚合框架.MapReduce以及几个简单聚合命令:count.distinct.group 聚合框架:可以使用多个构件创建一个管道,上一个构件的结果传给 ...
- Windows批量查找文件
for /r 目录名 %i in (匹配模式1,匹配模式2) do @echo %i for /r SATA %i in (*.txt) do @echo %i D:\REY\test>for ...
- postman测试实例--断言
postman测试实例--断言 让我们来看看postman测试的一些例子. 其中大部分是作为内部postman片段. 大多数测试是为单行的JavaScript语句一样简单. 只要你想一个请求,你可以有 ...
- obj-c部分对象快捷赋值和取值
NSNumber: NSNumber *number = @1234; 旧的方式: NSArray *physicsValues = [NSArrayarrayWithObjects: [NSNumb ...


