Caffe C++API 提取任意一张图片的特征系列二----MemoryData
介绍一种更加灵活的方法,用MemoryData层输入数据,可以直接用opencv接口读入我们的图片再添加的网络中。
第一个问题:仍然是工程建立问题,提示卷积层或其他层没有注册,解决方法与上一篇博客一样。可查看:http://blog.csdn.net/sunshine_in_moon/article/details/50125255
第二个问题:网络配置文件的改写,因为使用MemoryData层。
layers{
name: "data"
type: MEMORY_DATA //MemoryData层类型,还有需要注意,MEMORY_DATA别画蛇添足加上引号,否则会报错!
top: "data"
top: "label" //最好写上,虽然后面没有用到
transform_param{
mirror: false
crop_size:224
mean_value:129.1863//三个通道的均值
mean_value:104.7624
mean_value:93.5940
}
memory_data_param{//以下四个参数与ImageData稍有不同,请注意
batch_size:1
channels:3
height:224
width:224
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
第三个问题:代码,这段代码写的有点乱,请见谅!
template <typename Dtype>
caffe::Net<Dtype>* Net_Init_Load(
std::string param_file, std::string pretrained_param_file, caffe::Phase phase)
{
CheckFile(param_file);//CheckFile 是一个子函数我没有贴上,可以直接删掉这两行
CheckFile(pretrained_param_file);
caffe::Net<Dtype>* net(new caffe::Net<Dtype>(param_file, phase));
net->CopyTrainedLayersFrom(pretrained_param_file);
return net;
}
#define NetF float //宏定义 很多人包括我自己刚开始看到NetF也很困惑,原来就是float
int main()
{
/*
boost::shared_ptr< Net<float> > feature_net;
feature_net = Init_net();
cv::Mat src1;
src1 = cv::imread("test.jpg");
//cv::imshow("img", src1);
//cv::waitKey(0);
//cv::destroyAllWindows();
//cv::Mat rszimage;
//// The mean file image size is 256x256, need to resize the input image to 256x256
//cv::resize(src1, rszimage, cv::Size(244, 244));
std::vector<cv::Mat> patches;
patches.push_back(src1); // image is a cv::Mat, as I'm using #1416
std::vector<int> labels;
labels.push_back(0);
boost::shared_ptr< MemoryDataLayer<float> >memory_data_layer;
memory_data_layer = boost::static_pointer_cast<MemoryDataLayer<float>>(feature_net->layer_by_name("data"));
/*
caffe::Datum data;
caffe::ReadFileToDatum("test.jpg", &data);
caffe::MemoryDataLayer<float> *m_layer_ = (caffe::MemoryDataLayer<float> *)feature_net->layers()[0].get();
*/
/*
memory_data_layer->AddMatVector(patches,labels);
feature_net->ForwardPrefilled();
float data1;
data1 = Read_Feature_data(feature_net, "fc8");
cout << data1 << endl;
*/
/*从这里开始*/
cv::Mat src1;
src1 = cv::imread("test.jpg");
//cv::Mat rszimages;
//cv::resize(src1, rszimages, cv::Size(224, 224));
std::vector<cv::Mat> dv = { src1 };//****输入的图片,注意格式,即使只有一张图片也要使用向量格式
std::vector<int> label = { 0 };//**输入图片的标签(可随便写),也要注意是向量,这是由AddMatVector函数决定的
//caffe::Datum data;
//caffe::ReadFileToDatum("test.jpg", &data);
caffe::Net<NetF>* _net = Net_Init_Load<NetF>("FACE_deploy.prototxt",
"FACE.caffemodel", caffe::TEST);
caffe::MemoryDataLayer<NetF> *m_layer_ = (caffe::MemoryDataLayer<NetF> *)_net->layers()[0].get();//**定义个内存数据层指针
m_layer_->AddMatVector(dv, label);//***这两行很重要,是使用MemoryData层必须的,这是把图片和标签,添加到
//**MemoryData层
/*float loss = 0.0;
std::vector<caffe::Blob<float>*> results = _net->ForwardPrefilled(&loss);*/
int end_ind = _net->layers().size();
std::vector<caffe::Blob<NetF>*> input_vec;
clock_t start = clock();
_net->Forward(input_vec);
clock_t end = clock();
double totaltime;
totaltime = (double)(end - start) / CLOCKS_PER_SEC;
cout << "\n此程序的运行时间为" << totaltime << "秒!" << endl;
boost::shared_ptr<caffe::Blob<NetF>> fc8 = _net->blob_by_name("fc8");
const NetF* pstart = fc8->cpu_data();// ***这里是重点!重点!重点!,在这里耽误了很长时间。注意这里是个指针
//**也就是fc8->cpu_data()返回的一般是多维数据(可以看成是个数组),cout<<* pstart<<endl;这样只是打印出一个
//***数?当然是一个数了,*pstart只代表数组的第一个数,因此想获得所有的数据必须用循环!
std::cout << "It is right !!\n";
//std::cout << m_layer_->width() << std::endl;
//std::cout << pstart << endl;
//std::cout << fc8->cpu_data() << endl;
std::vector<double> V1;
for (int i = 0; i < 2622; i++)//**必须用循环打印
{
std::cout << *pstart << endl;
V1.push_back(*pstart);
pstart++;
}
//std::cout << *pstart << endl;
//std::cout << *(pstart++) << endl;
cout << "\n此程序的运行时间为" << totaltime << "秒!" << endl;
return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
重点内容已经在注释上标明(前面加了**),希望这些对你有帮助!
写的比较匆忙,以后如有新的体会,会及时更新!
Caffe C++API 提取任意一张图片的特征系列二----MemoryData的更多相关文章
- caffe:使用C++来提取任意一张图片的特征(从内存读取数据)
0x00 关于使用C++接口来提取特征,caffe官方提供了一个extract_features.cpp的例程,但是这个文件的输入是blob数据,即使输入层使用的是ImageData,也需要在depl ...
- caffe:使用C++来提取任意一张图片的特征
0x00 关于使用C++接口来提取特征,caffe官方提供了一个extract_features.cpp的例程,但是这个文件的输入是blob数据,即使输入层使用的是ImageData,也需要在depl ...
- arcgis api 3.x for js 入门开发系列二十二地图模态层(附源码下载)
前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...
- arcgis api 3.x for js 入门开发系列二十一气泡窗口信息动态配置模板
前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...
- arcgis api 3.x for js 入门开发系列二不同地图服务展示(附源码下载)
前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...
- Caffe提取任意层特征并进行可视化
现在Caffe的Matlab接口 (matcaffe3) 和python接口都非常强大, 可以直接提取任意层的feature map以及parameters, 所以本文仅仅作为参考, 更多最新的信息请 ...
- opencv java api提取图片sift特征
opencv在2.4.4版本以后添加了对java的最新支持,可以利用java api了.下面就是我利用opencv的java api 提取图片的sift特征. import org.opencv.co ...
- OpenCV提取显示一张图片(或者视频)的R,G,B颜色分量
使用OpenCV可以提分别提取显示一张图片(或者视频)的R,G,B颜色分量.效果如下. 原图: R: G: B: 示例代码如下,貌似很久以前网上找的的,逻辑很清晰,就是把R,G,B三个分量分开,然后显 ...
- Redis总结(五)缓存雪崩和缓存穿透等问题 Web API系列(三)统一异常处理 C#总结(一)AutoResetEvent的使用介绍(用AutoResetEvent实现同步) C#总结(二)事件Event 介绍总结 C#总结(三)DataGridView增加全选列 Web API系列(二)接口安全和参数校验 RabbitMQ学习系列(六): RabbitMQ 高可用集群
Redis总结(五)缓存雪崩和缓存穿透等问题 前面讲过一些redis 缓存的使用和数据持久化.感兴趣的朋友可以看看之前的文章,http://www.cnblogs.com/zhangweizhon ...
随机推荐
- BZOJ 2324 (有上下界的)费用流
思路: 先跑一遍Floyd 更新的时候map[i][j]=map[i][k]+map[k][j] k需要小于i或j 正常建边: 把所有点 拆点-> i,i+n add(x,y,C,E)表示x ...
- Javascript中数组重排序方法详解
在数组中有两个可以用来直接排序的方法,分别是reverse()和sort().下面通过本文给大家详细介绍,对js 数组重排序相关知识感兴趣的朋友一起看看吧. 1.数组中已存在两个可直接用来重排序的方法 ...
- 对比JavaScript的入口函数和jQuery的入口函数
JavaScript的入口函数要等到页面中所有的资源(包括图片.文件)加载完成才开始执行. jQuery的入口函数只会等待文档数加载完成就开始执行,并不会等待图片.文件的加载.
- iOS11关于隐藏导航栏后带有tableView界面出现,下移问题
//解决iOS11关于隐藏导航栏后带有scrollView界面出现,下移问题 if (@available(iOS 11.0, *)) { self.tableView.contentInsetAdj ...
- MIME类型记录
Content-Disposition: attachment; filename="filename.xls" 提供下载
- 【技术累积】【点】【java】【9】Optional
基础概念 java8引入的,java9有加强 Google公司出品 旨在更好的处理NullPointException 创建Optional实例和基础使用 Optional op1 = Optiona ...
- SDL2源代码分析
1:初始化(SDL_Init()) SDL简介 有关SDL的简介在<最简单的视音频播放示例7:SDL2播放RGB/YUV>以及<最简单的视音频播放示例9:SDL2播放PCM>中 ...
- 基于Nginx的SSL虚拟主机
通过私钥,证书对站点www.test.com的所有数据加密,实现通过https访问www.test.com 环境说明: 源码安装Nginx时必须使用--with-http_ssl_module参数,启 ...
- vc++元文件的保存,保存图形,重绘图形
1, CMateFileDC 可以用来多次打开自己的画布,这个元文件包含许多接口的命令 当绘制好之后可以用来播放元文件 首先,创建一个CMateFileDC的元文件对象 然后调用Create原函数,创 ...
- 路飞学城Python-Day80
36-模板语法之继承 Django模版引擎中最强大也是最复杂的部分就是模版继承了.模版继承可以让您创建一个基本的“骨架”模版,它包含您站点中的全部元素,并且可以定义能够被子模版覆盖的 blocks . ...