介绍一种更加灵活的方法,用MemoryData层输入数据,可以直接用opencv接口读入我们的图片再添加的网络中。 

第一个问题:仍然是工程建立问题,提示卷积层或其他层没有注册,解决方法与上一篇博客一样。可查看:http://blog.csdn.net/sunshine_in_moon/article/details/50125255 

第二个问题:网络配置文件的改写,因为使用MemoryData层。

layers{
name: "data"
type: MEMORY_DATA //MemoryData层类型,还有需要注意,MEMORY_DATA别画蛇添足加上引号,否则会报错!
top: "data"
top: "label" //最好写上,虽然后面没有用到
transform_param{
mirror: false
crop_size:224
mean_value:129.1863//三个通道的均值
mean_value:104.7624
mean_value:93.5940
}
memory_data_param{//以下四个参数与ImageData稍有不同,请注意
batch_size:1
channels:3
height:224
width:224
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

第三个问题:代码,这段代码写的有点乱,请见谅!

template <typename Dtype>
caffe::Net<Dtype>* Net_Init_Load(
std::string param_file, std::string pretrained_param_file, caffe::Phase phase)
{
CheckFile(param_file);//CheckFile 是一个子函数我没有贴上,可以直接删掉这两行
CheckFile(pretrained_param_file); caffe::Net<Dtype>* net(new caffe::Net<Dtype>(param_file, phase)); net->CopyTrainedLayersFrom(pretrained_param_file);
return net;
} #define NetF float //宏定义 很多人包括我自己刚开始看到NetF也很困惑,原来就是float int main()
{
/*
boost::shared_ptr< Net<float> > feature_net;
feature_net = Init_net(); cv::Mat src1;
src1 = cv::imread("test.jpg");
//cv::imshow("img", src1);
//cv::waitKey(0);
//cv::destroyAllWindows();
//cv::Mat rszimage; //// The mean file image size is 256x256, need to resize the input image to 256x256
//cv::resize(src1, rszimage, cv::Size(244, 244));
std::vector<cv::Mat> patches;
patches.push_back(src1); // image is a cv::Mat, as I'm using #1416
std::vector<int> labels;
labels.push_back(0); boost::shared_ptr< MemoryDataLayer<float> >memory_data_layer;
memory_data_layer = boost::static_pointer_cast<MemoryDataLayer<float>>(feature_net->layer_by_name("data"));
/*
caffe::Datum data;
caffe::ReadFileToDatum("test.jpg", &data);
caffe::MemoryDataLayer<float> *m_layer_ = (caffe::MemoryDataLayer<float> *)feature_net->layers()[0].get();
*/
/*
memory_data_layer->AddMatVector(patches,labels); feature_net->ForwardPrefilled(); float data1;
data1 = Read_Feature_data(feature_net, "fc8");
cout << data1 << endl;
*/ /*从这里开始*/
cv::Mat src1;
src1 = cv::imread("test.jpg");
//cv::Mat rszimages; //cv::resize(src1, rszimages, cv::Size(224, 224));
std::vector<cv::Mat> dv = { src1 };//****输入的图片,注意格式,即使只有一张图片也要使用向量格式
std::vector<int> label = { 0 };//**输入图片的标签(可随便写),也要注意是向量,这是由AddMatVector函数决定的 //caffe::Datum data;
//caffe::ReadFileToDatum("test.jpg", &data); caffe::Net<NetF>* _net = Net_Init_Load<NetF>("FACE_deploy.prototxt",
"FACE.caffemodel", caffe::TEST);
caffe::MemoryDataLayer<NetF> *m_layer_ = (caffe::MemoryDataLayer<NetF> *)_net->layers()[0].get();//**定义个内存数据层指针
m_layer_->AddMatVector(dv, label);//***这两行很重要,是使用MemoryData层必须的,这是把图片和标签,添加到
//**MemoryData层 /*float loss = 0.0;
std::vector<caffe::Blob<float>*> results = _net->ForwardPrefilled(&loss);*/ int end_ind = _net->layers().size();
std::vector<caffe::Blob<NetF>*> input_vec; clock_t start = clock();
_net->Forward(input_vec);
clock_t end = clock();
double totaltime;
totaltime = (double)(end - start) / CLOCKS_PER_SEC;
cout << "\n此程序的运行时间为" << totaltime << "秒!" << endl; boost::shared_ptr<caffe::Blob<NetF>> fc8 = _net->blob_by_name("fc8");
const NetF* pstart = fc8->cpu_data();// ***这里是重点!重点!重点!,在这里耽误了很长时间。注意这里是个指针
//**也就是fc8->cpu_data()返回的一般是多维数据(可以看成是个数组),cout<<* pstart<<endl;这样只是打印出一个
//***数?当然是一个数了,*pstart只代表数组的第一个数,因此想获得所有的数据必须用循环!
std::cout << "It is right !!\n";
//std::cout << m_layer_->width() << std::endl;
//std::cout << pstart << endl;
//std::cout << fc8->cpu_data() << endl;
std::vector<double> V1;
for (int i = 0; i < 2622; i++)//**必须用循环打印
{
std::cout << *pstart << endl;
V1.push_back(*pstart);
pstart++;
}
//std::cout << *pstart << endl;
//std::cout << *(pstart++) << endl;
cout << "\n此程序的运行时间为" << totaltime << "秒!" << endl;
return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111

重点内容已经在注释上标明(前面加了**),希望这些对你有帮助! 

写的比较匆忙,以后如有新的体会,会及时更新!

Caffe C++API 提取任意一张图片的特征系列二----MemoryData的更多相关文章

  1. caffe:使用C++来提取任意一张图片的特征(从内存读取数据)

    0x00 关于使用C++接口来提取特征,caffe官方提供了一个extract_features.cpp的例程,但是这个文件的输入是blob数据,即使输入层使用的是ImageData,也需要在depl ...

  2. caffe:使用C++来提取任意一张图片的特征

    0x00 关于使用C++接口来提取特征,caffe官方提供了一个extract_features.cpp的例程,但是这个文件的输入是blob数据,即使输入层使用的是ImageData,也需要在depl ...

  3. arcgis api 3.x for js 入门开发系列二十二地图模态层(附源码下载)

    前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...

  4. arcgis api 3.x for js 入门开发系列二十一气泡窗口信息动态配置模板

    前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...

  5. arcgis api 3.x for js 入门开发系列二不同地图服务展示(附源码下载)

    前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...

  6. Caffe提取任意层特征并进行可视化

    现在Caffe的Matlab接口 (matcaffe3) 和python接口都非常强大, 可以直接提取任意层的feature map以及parameters, 所以本文仅仅作为参考, 更多最新的信息请 ...

  7. opencv java api提取图片sift特征

    opencv在2.4.4版本以后添加了对java的最新支持,可以利用java api了.下面就是我利用opencv的java api 提取图片的sift特征. import org.opencv.co ...

  8. OpenCV提取显示一张图片(或者视频)的R,G,B颜色分量

    使用OpenCV可以提分别提取显示一张图片(或者视频)的R,G,B颜色分量.效果如下. 原图: R: G: B: 示例代码如下,貌似很久以前网上找的的,逻辑很清晰,就是把R,G,B三个分量分开,然后显 ...

  9. Redis总结(五)缓存雪崩和缓存穿透等问题 Web API系列(三)统一异常处理 C#总结(一)AutoResetEvent的使用介绍(用AutoResetEvent实现同步) C#总结(二)事件Event 介绍总结 C#总结(三)DataGridView增加全选列 Web API系列(二)接口安全和参数校验 RabbitMQ学习系列(六): RabbitMQ 高可用集群

    Redis总结(五)缓存雪崩和缓存穿透等问题   前面讲过一些redis 缓存的使用和数据持久化.感兴趣的朋友可以看看之前的文章,http://www.cnblogs.com/zhangweizhon ...

随机推荐

  1. JavaScript DOM 总结

    一.DOM基础1.节点(node)层次Document--最顶层的节点,所有的其他节点都是附属于它的.DocumentType--DTD引用(使用<!DOCTYPE>语法)的对象表现形式, ...

  2. C++关键字简述

    ID 范畴 关键字 说明 1 数据类型 bool 基本类型—-布尔类型 2 数据类型 char 基本类型—-字符类型 3 数据类型 wchar_t 基本类型—-宽字符类型 4 数据类型 double ...

  3. SVN添加分支

    1.打开版本库浏览视图 2.复制当前版本 3.输入复制的目的目录即可

  4. 【WebApp】IOS兼容问题

    最近,主要是基于Framework7 + RequireJs框架,移动端团队开发Webview框架,内嵌Web的模式进行WebApp开发. 在开发过程中不得不遇到一些 兼容性问题. 1.现象:IOS环 ...

  5. 查看Linux系统版本信息的几种方法

    一.查看Linux内核版本命令(两种方法): 1.cat /proc/version 2.uname -a 二.查看Linux系统版本的命令(3种方法): 1.lsb_release -a,即可列出所 ...

  6. CentOS 7 yum 安装redis(更简单)

    一.安装redis 1.检查是否有redis yum 源 1 yum install redis 2.下载fedora的epel仓库 1 yum install epel-release 3.安装re ...

  7. P1546 最短网络 Agri-Net (kruskal)

    题目背景 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场.当然,他需要你的帮助. 题目描述 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其 ...

  8. mysql 每个月创建新表

    1.CREATE DEFINER=`root`@`%` PROCEDURE `aa`()BEGIN SET @sqlstr = CONCAT('create table cdrpbx10_',DATE ...

  9. 小松之LINUX 驱动学习笔记(二)

    这两天一直在看字符驱动那块,后来从网上找啦几个例子,自己编译啦下,安装啥的都挺正常,就是用测试程序测试的时候总出问题,现在找到一个能测试的代码,自己先看看和原来的那个代码有啥不同,后面会继续更新,说下 ...

  10. 使用maven创建web项目时后面多出来Maven Webapp如何删除

    类似这样: 解决办法: