tesuto-Mobius
求 \begin{equation*}\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k]\end{equation*} 的值.
莫比乌斯反演吧.
\begin{align*}
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|\gcd(i,j)=1}\mu(d)\\
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|\gcd(i,j)=1}\mu(d)\\
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|i}\sum_{d|j}\mu(d)\\
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{d|i}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|j}\mu(d)\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k\right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{d|i}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|j}1\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k\right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{d|i}1\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|j}1\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k \right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\left\lfloor\frac{\left\lfloor\frac n k\right\rfloor}d\right\rfloor\left\lfloor\frac{\left\lfloor\frac m k\right\rfloor}d\right\rfloor\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k \right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\left\lfloor\frac n{kd}\right\rfloor\left\lfloor\frac m{kd}\right\rfloor\\
\end{align*}
tesuto-Mobius的更多相关文章
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- Bzoj-2820 YY的GCD Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...
- SPOJ PGCD (mobius反演 + 分块)
转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove 题意 :求满足gcd(i , j)是素数(1 &l ...
- Matplotlib学习---用mplot3d画莫比乌斯环(Mobius strip)
mplot3d是matplotlib里用于绘制3D图形的一个模块.关于mplot3d 绘图模块的介绍请见:https://blog.csdn.net/dahunihao/article/details ...
- (暂时弃坑)(半成品)ACM数论之旅18---反演定理 第二回 Mobius反演(莫比乌斯反演)((づ ̄3 ̄)づ天才第一步,雀。。。。)
莫比乌斯反演也是反演定理的一种 既然我们已经学了二项式反演定理 那莫比乌斯反演定理与二项式反演定理一样,不求甚解,只求会用 莫比乌斯反演长下面这个样子(=・ω・=) d|n,表示n能够整除d,也就是d ...
- 数学图形之莫比乌斯带(mobius)
莫比乌斯带,又被译作:莫比斯环,梅比斯環或麦比乌斯带.是一种拓扑学结构,它只有一个面(表面),和一个边界.即它的正反两面在同一个曲面上,左右两个边在同一条曲线上.看它的名字很洋气,听它的特征很玄乎,实 ...
- Bzoj-2301 [HAOI2011]Problem b 容斥原理,Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b ...
- 关于Mobius反演
欧拉函数 \(\varphi\) \(\varphi(n)=\)表示不超过 \(n\) 且与 \(n\) 互质的正整数的个数 \[\varphi(n)=n\cdot \prod_{i=1}^{s}(1 ...
- mobius反演讲解
mobius反演的基本形式为,假设知道函数F(x)=Σf(d) d|x,那么我们可以推出f(x)=Σmiu(d)*F(x/d) d|x,另一基本形式为假设知道函数F(x)=Σf(d) x|d,那么我们 ...
- bzoj 2820 mobius反演
学了一晚上mobius,终于A了一道了.... 假设枚举到i,质数枚举到p(程序里的prime[j]),要更新A=i*p的信息. 1. p|i 这时A的素数分解式中,p这一项的次数>=2. ...
随机推荐
- HDU4882ZCC Loves Codefires(贪心)
ZCC Loves Codefires Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- Candy [leetcode] O(n)时间复杂度,O(1)空间复杂度的方法
对于ratings[i+1],和ratings[i]的关系有下面几种: 1. 相等.相等时ratings[i+1]相应的糖果数为1 2.ratings[i + 1] > ratings[i].在 ...
- Swift基本常识点
import Foundation // 单行注释 // 多行注释(支持嵌套,OC是不支持的) // 常量let,初始化之后就不可改变. // 常量的具体类型可以自动识别,等号后面是什么类型,它就是什 ...
- 关注C-RAN 的五大理由
关注C-RAN的五大理由 Scott Wakelin 近期行业媒体上有大量关于移动网络运营商(如美国的VerizonWireless和AT&T.法国电信以及中国移动等)怎样在着力探索一种 ...
- acdream 1414 Geometry Problem
Geometry Problem Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) ...
- 关于ajax技术
传统注册存在的弊端 : 当我们点击注册时,会存在以下几个问题. 首先,浏览器会销毁当前页面,如果注册失败返回的新页面所有之前 填写的数据丢失. 其次,如果网络通信较差,我们表单提交请求数据到服务端,而 ...
- oc56--ARC多个对象的内存管理
// main.m // ARC中多个对象的内存管理:ARC的内存管理就是MRC的内存管理(一个对象释放的时候,必然会把它里面的对象释放),只不过一个是Xcode加的代码,一个是我们自己加的代码: / ...
- [NOIP 2014] 寻找道路
[题目链接] http://uoj.ac/problem/19 [算法] 首先,在反向图上从终点广搜,求出每个点是否可以在答案路径中 然后在正向图中求出源点至终点的最短路,同样可以使用广搜 时间复杂度 ...
- 运行项目psychologicalTest
[mysql] # 设置mysql客户端默认字符集 default-character-set=utf8 [mysqld] #设置3306端口 port = 3306 # 设置mysql的安装目录 b ...
- 线性预测与Levinson-Durbin算法实现
在学习信号处理的时候,线性预测是一个比较难理解的知识点,为了加快很多朋友的理解,这里给出Levinson-Durbin算法的线性预测实现和一个测试Demo,Demo中很明确的把输入信号.预测信号.预测 ...