求 \begin{equation*}\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k]\end{equation*} 的值.

莫比乌斯反演吧.

\begin{align*}
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|\gcd(i,j)=1}\mu(d)\\
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|\gcd(i,j)=1}\mu(d)\\
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|i}\sum_{d|j}\mu(d)\\
&=\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{d|i}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|j}\mu(d)\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k\right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{d|i}\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|j}1\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k\right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\sum_{i=1}^{\left\lfloor\frac n k\right\rfloor}\sum_{d|i}1\sum_{j=1}^{\left\lfloor\frac m k\right\rfloor}\sum_{d|j}1\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k \right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\left\lfloor\frac{\left\lfloor\frac n k\right\rfloor}d\right\rfloor\left\lfloor\frac{\left\lfloor\frac m k\right\rfloor}d\right\rfloor\\
&=\sum_{d=1}^{\min\left(\left\lfloor\frac n k \right\rfloor,\left\lfloor\frac m k\right\rfloor\right)}\mu(d)\left\lfloor\frac n{kd}\right\rfloor\left\lfloor\frac m{kd}\right\rfloor\\
\end{align*}

tesuto-Mobius的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  2. Bzoj-2820 YY的GCD Mobius反演,分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...

  3. SPOJ PGCD (mobius反演 + 分块)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意 :求满足gcd(i , j)是素数(1 &l ...

  4. Matplotlib学习---用mplot3d画莫比乌斯环(Mobius strip)

    mplot3d是matplotlib里用于绘制3D图形的一个模块.关于mplot3d 绘图模块的介绍请见:https://blog.csdn.net/dahunihao/article/details ...

  5. (暂时弃坑)(半成品)ACM数论之旅18---反演定理 第二回 Mobius反演(莫比乌斯反演)((づ ̄3 ̄)づ天才第一步,雀。。。。)

    莫比乌斯反演也是反演定理的一种 既然我们已经学了二项式反演定理 那莫比乌斯反演定理与二项式反演定理一样,不求甚解,只求会用 莫比乌斯反演长下面这个样子(=・ω・=) d|n,表示n能够整除d,也就是d ...

  6. 数学图形之莫比乌斯带(mobius)

    莫比乌斯带,又被译作:莫比斯环,梅比斯環或麦比乌斯带.是一种拓扑学结构,它只有一个面(表面),和一个边界.即它的正反两面在同一个曲面上,左右两个边在同一条曲线上.看它的名字很洋气,听它的特征很玄乎,实 ...

  7. Bzoj-2301 [HAOI2011]Problem b 容斥原理,Mobius反演,分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b ...

  8. 关于Mobius反演

    欧拉函数 \(\varphi\) \(\varphi(n)=\)表示不超过 \(n\) 且与 \(n\) 互质的正整数的个数 \[\varphi(n)=n\cdot \prod_{i=1}^{s}(1 ...

  9. mobius反演讲解

    mobius反演的基本形式为,假设知道函数F(x)=Σf(d) d|x,那么我们可以推出f(x)=Σmiu(d)*F(x/d) d|x,另一基本形式为假设知道函数F(x)=Σf(d) x|d,那么我们 ...

  10. bzoj 2820 mobius反演

    学了一晚上mobius,终于A了一道了.... 假设枚举到i,质数枚举到p(程序里的prime[j]),要更新A=i*p的信息. 1. p|i    这时A的素数分解式中,p这一项的次数>=2. ...

随机推荐

  1. Smobiler实现列表展示—GridView(开发日志十二)

    一.列表功能展示   二.具体步骤 2.1,列表控件设计部分 2.1-① 在窗口SmoiblerForm1中加入gridview控件   2.1-② 在属性栏设置gridview控件的大小和位置   ...

  2. ListView的基本使用技巧

    ListView的基本使用技巧 1.headerView和footerView 2.ViewHolder 3.OnScrollListener 4.单行刷新 5.其它细节 ListView提供head ...

  3. ⭐linux主次设备号介绍

    1.主设备号与次设备号的功能 在Linux内核中,主设备号标识设备对应的驱动程序,告诉Linux内核使用哪一个驱动程序为该设备(也就是/dev下的设备文件)服务:而次设备号则用来标识具体且唯一的某个设 ...

  4. 80.用户管理 Extjs 页面

    1 <%@ page language="java" import="java.util.*" pageEncoding="UTF-8" ...

  5. VS2010中文注释带红色下划线的解决方法

    环境:Visual Studio 2010 问题:代码中出现中文后会带下划线,很多时候感觉很不舒服.找了很久的原因没找到,后来无意中在VisualAssist X里找到了解决办法. 1.安装完Visu ...

  6. codevs1959拔河比赛(二维费用背包)

    1959 拔河比赛  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold     题目描述 Description 一个学校举行拔河比赛,所有的人被分成了两组,每个人 ...

  7. python 3:str.upper()与str.lower()(使字符串字母全部大写或小写)

    name = "Hello,World! Hello,Python!" print(name.upper()) #字母全部大写 print(name.lower()) #字母全部小 ...

  8. RabbitMQ .NET消息队列使用入门(二)【多个队列间消息传输】

    孤独将会是人生中遇见的最大困难. 实体类: DocumentType.cs public enum DocumentType { //日志 Journal = 1, //论文 Thesis = 2, ...

  9. Jquery 获取父页面下指定iframe里的指定元素

    var div1=$("#iframe1",window.parent.document).contents().find("#div1");

  10. Struts/Hibernate/Spring源码下载

    Struts: https://olex.openlogic.com/packages/struts Hibernate: https://olex.openlogic.com/packages/hi ...