传送门

Description

给你一张 n 个点 m 条边的DAG,1 号节点没有入边。再向这个DAG中加入边 x→y ,求形成的新图中以 1 为根的外向树形图数 模 10^9+7 。

Input

输入文件的第一行包含四个整数 n、m、x和y,依次代表枫叶上的穴位数、脉络数,以及要添加的脉络是从穴位 x连向穴位y的。 接下来 m行,每行两个整数,由空格隔开,代表一条脉络。第 i 行的两个整数为ui和vi,代表第 i 条脉络是从穴位 ui连向穴位vi的。

Output

输出一行,为添加了从穴位 x连向穴位 y的脉络后,枫叶上以穴位 1 为根的脉络树的方案数对 1,000,000,007取模得到的结果。

Sample Input

4 4 4 3

1 2

1 3

2 4

3 2

Sample Output

3

HINT

对于所有测试数据,1 <= n <= 100000,n - 1 <= m <= min(200000, n(n -1) / 2),

1 <= x, y, ui, vi <= n。

Solution

直接处理外向树形图的数目比较困难,考虑容斥,用 每个点选一条入边的方案数 减去 每个点选一条入边形成不了外向树形图的方案数 得到答案。

每个点选一条入边的方案数直接求

对于无法形成外向树形图的情况显然是出现了一个环(除自环)而我们知道x和y显然就在环中,那么我们只需要从y到x跑一个拓扑排序+dp求出y到x的路径数所占总路径数的比例即可

Code

//By Menteur_Hxy
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
using namespace std;
typedef long long LL; int read() {
int x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} const int N=100010,MOD=1000000007;
bool vis[N];
LL ans,du[N],f[N],de[N];
vector <int> V[N];
queue <int> Q; LL qpow(LL a,LL b) {
LL t=1;
while(b) {
if(b&1) t=t*a%MOD;
a=a*a%MOD; b>>=1;
}
return t;
} void dfs(int x) {
int siz=V[x].size();
F(i,0,siz-1) if(!vis[V[x][i]]) vis[V[x][i]]=1,dfs(V[x][i]);
} int main() {
int n=read(),m=read(),s=read(),t=read(),u,v;
ans=du[1]=1; du[t]++;
F(i,1,m) u=read(),v=read(),V[u].push_back(v),du[v]++;
F(i,1,n) ans=ans*du[i]%MOD,du[i]=qpow(du[i],MOD-2);
vis[t]=1; dfs(t);
F(i,1,n) {
int siz=V[i].size();
F(j,0,siz-1) if(vis[i]&&vis[v=V[i][j]]) de[v]++;
}
f[t]=du[t]; Q.push(t);
while(!Q.empty()) {
u=Q.front(); Q.pop();
int siz=V[u].size();
F(i,0,siz-1) if(vis[v=V[u][i]]) {
f[v]=(f[v]+f[u]*du[v])%MOD;
de[v]--;
if(!de[v]) Q.push(v);
}
}
printf("%lld",ans*(1-f[s]+MOD)%MOD);
return 0;
}

[luogu3244 HNOI2015] 落忆枫音(容斥原理+拓扑排序)的更多相关文章

  1. 【bzoj4011】[HNOI2015]落忆枫音 容斥原理+拓扑排序+dp

    题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 ...

  2. [BZOJ4011][HNOI2015]落忆枫音:拓扑排序+容斥原理

    分析 又是一个有故事的题目背景.作为玩过原作的人,看题目背景都快看哭了ToT.强烈安利本境系列,话说SP-time的新作要咕到什么时候啊. 好像扯远了嘛不管了. 一句话题意就是求一个DAG再加上一条有 ...

  3. BZOJ4011:[HNOI2015]落忆枫音(DP,拓扑排序)

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也 ...

  4. BZOJ 4011: [HNOI2015]落忆枫音 计数 + 拓扑排序

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...

  5. 【题解】 [HNOI2015]落忆枫音 (拓扑排序+dp+容斥原理)

    原题戳我 Solution: (部分复制Navi_Aswon博客) 解释博客中的两个小地方: \[\sum_{\left(S是G中y→x的一条路径的点集\right))}\prod_{2≤j≤n,(j ...

  6. BZOJ 4011: [HNOI2015]落忆枫音( dp )

    DAG上有个环, 先按DAG计数(所有节点入度的乘积), 然后再减去按拓扑序dp求出的不合法方案数(形成环的方案数). ---------------------------------------- ...

  7. bzoj4011[HNOI2015]落忆枫音 dp+容斥(?)

    4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1125  Solved: 603[Submit][Statu ...

  8. [HNOI2015]落忆枫音 解题报告

    [HNOI2015]落忆枫音 设每个点入度是\(d_i\),如果不加边,答案是 \[ \prod_{i=2}^nd_i \] 意思是我们给每个点选一个父亲 然后我们加了一条边,最后如果还这么统计,那么 ...

  9. 4011: [HNOI2015]落忆枫音

    4011: [HNOI2015]落忆枫音 链接 分析: 原来是一个DAG,考虑如何构造树形图,显然可以给每个点找一个父节点,所以树形图的个数就是$\prod\limits_u deg[u]$. 那么加 ...

随机推荐

  1. [IOS/翻译]Core Services Layer

    本文是本人自己辛苦翻译的,请转载的朋友注明,翻译于Z.MJun的CSDN的博客 http://blog.csdn.net/Zheng_Paul,感谢. 翻译于2015年10月4日 Core Servi ...

  2. Codeforces Round #390 (Div. 2) D. Fedor and coupons

    题意:题目简化了就是要给你n个区间,然后让你选出k个区间  使得这k个区间有公共交集:问这个公共交集最大能是多少,并且输出所选的k个区间.如果有多组答案,则输出任意一种.   这题是用优先队列来处理区 ...

  3. Nearest-Neighbor Methods(ESL读书笔记)

    Nearest-neighbor methods use those observations in the training set T closest in input space to x  f ...

  4. selenium3 + python - select定位

    一.Select模块(index)     1.导入Select模块.直接根据属性或索引定位     2.先要导入select方法:from selenium.webdriver.support.se ...

  5. layui富文本编译器添加图片

    1.创建富文本编辑器 <form class="layui-form" method="post" id="myForm" encty ...

  6. 【Codeforces】Codeforces Round #373 (Div. 2) -C

    C. Efim and Strange Grade Efim just received his grade for the last test. He studies in a special sc ...

  7. Laravel5.1学习笔记8 Blade模板

    简介 模板继承 定义一个页面布局模板 扩展一个页面布局模板 展示数据 控制语法的结构 Service Injection 扩展 Blade   简介 Blade 是 Laravel 提供的一个既简单又 ...

  8. web通信之跨文档通信 postMessage

    index.html <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type&qu ...

  9. avaScript中变量的声明和赋值

    变量是指程序中一个已经命名的存储单元,它的主要作用就是为数据操作提供存放信息的容器.变量是相对常量而言的.常量是一个不会改变的固定值,而变量的值可能会随着程序的执行而改变.变量有两个基本特征,即变量名 ...

  10. 去除DialogFragment的背景阴影,背景色,标题栏

    style中: <resources xmlns:android="http://schemas.android.com/apk/res/android"> <s ...