1. Γ(a+b)Γ(a)Γ(b):归一化系数

Beta(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1

面对这样一个复杂的概率密度函数,我们不禁要问,Γ(a+b)Γ(a)Γ(b) 是怎么来的,还有既然是一种分布,是否符合归一化的要求,即:

∫10Beta(μ|a,b)dμ=1

通过后续的求解我们将发现,这两者其实是同一个问题,即正是为了使得 Beta 分布符合归一化的要求,才在前面加了 Γ(a+b)Γ(a)Γ(b),这样复杂的归一化系数。

为了证明:

∫10Beta(μ|a,b)=1⇒∫10Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1dμ⇓∫10μa−1(1−μ)b−1dμ=Γ(a)Γ(b)Γ(a+b)

进一步,根据 Γ(x)=∫∞0e−ttx−1dt 的定义,我们首先来计算(令 t=x+y):

Γ(a)Γ(b)======∫∞0e−xxa−1dx∫∞0e−yyb−1dy∫∞0xa−1{∫∞xe−t(t−x)b−1dt}dx(交换t与x的积分顺序,注意画图)∫∞0e−t{∫t0xa−1(t−x)b−1dx}dt(变换替换x=tμ)∫∞0e−t{∫10(tμ)a−1(t−tμ)b−1tdμ}dt∫∞0e−tta+b−1dt∫10μa−1(1−μ)b−1dμΓ(a+b)∫10μa−1(1−μ)b−1dμ

因此:

∫10μa−1(1−μ)b−1dμ=Γ(a)Γ(b)Γ(a+b)

2. 期望与方差的计算

首先来看期望:

E(μ)====∫10μΓ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1dμΓ(a+b)Γ(a)Γ(b)∫10μa+1−1(1−μ)b−1dμΓ(a+b)Γ(a)Γ(b)Γ(a+1)Γ(b)Γ(a+1+b)aa+b

计算方差之前,首先计算二阶矩:

E(μ2)=Γ(a+b)Γ(a)Γ(b)Γ(a+2)Γ(b)Γ(a+2+b)=a(a+1)(a+b)(a+b+1)

因此方差:

var[μ]=E(μ2)−E2(μ)=ab(a+b)2(a+b+1)

Beta 分布归一化的证明(系数是怎么来的),期望和方差的计算的更多相关文章

  1. 数理统计4:均匀分布的参数估计,次序统计量的分布,Beta分布

    接下来我们就对除了正态分布以外的常用参数分布族进行参数估计,具体对连续型分布有指数分布.均匀分布,对离散型分布有二项分布.泊松分布几何分布. 今天的主要内容是均匀分布的参数估计,内容比较简单,读者应尝 ...

  2. 二项分布 多项分布 伽马函数 Beta分布

    http://blog.csdn.net/shuimu12345678/article/details/30773929 0-1分布: 在一次试验中,要么为0要么为1的分布,叫0-1分布. 二项分布: ...

  3. 如何通俗理解贝叶斯推断与beta分布?

    有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”: 能够说明它两面都是“花”吗? 1 贝叶斯推断 按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是: 但是抛三次实在太少了,完 ...

  4. 二项分布 , 多项分布, 以及与之对应的beta分布和狄利克雷分布

    1. 二项分布与beta分布对应 2. 多项分布与狄利克雷分布对应 3. 二项分布是什么?n次bernuli试验服从 二项分布 二项分布是N次重复bernuli试验结果的分布. bernuli实验是什 ...

  5. Beta分布从入门到精通

    近期一直有点小忙,可是不知道在瞎忙什么,最终有时间把Beta分布的整理弄完. 以下的内容.夹杂着英文和中文,呵呵- Beta Distribution Beta Distribution Defini ...

  6. 指数家族-Beta分布

    2. Beta分布 2.1 Beta分布 我们将由几个问题来得引出几个分布: 问题一:1:  2:把这个  个随机变量排序后得到顺序统计量  3:问  是什么分布 首先我们尝试计算  落在一个区间   ...

  7. (转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布

    1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3.  4.  ...

  8. 二项分布和Beta分布

    原文为: 二项分布和Beta分布 二项分布和Beta分布 In [15]: %pylab inline import pylab as pl import numpy as np from scipy ...

  9. 关于Beta分布、二项分布与Dirichlet分布、多项分布的关系

    在机器学习领域中,概率模型是一个常用的利器.用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释:2)可以利用现 ...

随机推荐

  1. vim的快捷键大全

    vim是开发利器,掌握快捷可以事半功倍,这里总结下常用的快捷键,提高开发速度这里写代码片 1.vim ~/.vimrc 进入配置文件 如果不知道vimrc文件在哪,可使用 :scriptnames 来 ...

  2. Android 解决小米手机Android Studio安装app 报错的问题It is possible that this issue is resolved by uninstalling an existi

    Android Studio升级到2.3版本之后,小米手机MIUI8不能运行Android Studio程序,报如下错误: Installation failed with message Faile ...

  3. Android Activity has leaked window that was originally added

    今天调试程序时log中突然打印这样的错误,但是程序并没有crash,为了不放过一个错误,我决定调查一下. 当时是离开一个activity,然后提示是否退出此界面,接下来就打印此错误: - ::): A ...

  4. RecyclerView的基础用法

    为了让RecyclerView可以在所有的Android版本中都能使用,Android开发团队将RecyclerView定义在support.v7包当中.在使用该控件时需要打开当前Modile的bui ...

  5. MYSQL 代码删除和添加表格列方法

    一个表格建立后用代码删除或添加列: -- 删除列alter table teacher drop column create_time;-- 添加列alter table teacher add co ...

  6. 扩展银行项目,添加一个(客户类)Customer类。Customer类将包含一个Account对象。

    练习目标-使用引用类型的成员变量:在本练习中,将扩展银行项目,添加一个(客户类)Customer类.Customer类将包含一个Account对象. 任务 在banking包下的创建Customer类 ...

  7. 【SQL】约束

    1. 添加约束 1)使用ALTER TABLE语句 •添加或删除约束,不会修改其结构 •启用和禁用约束 •通过使用MODIFY子句添加NOTNULL约束 ALTER TABLE <table_n ...

  8. 通用功能类:改变WinForm窗体显示颜色

    一.显示窗体调用方法 protected override void OnLoad(EventArgs e)        {            MDIClientSupport.SetBevel ...

  9. Python总结1

    时间:24日下午输入:input()输出:print()格式化输出通过某种占位符用于替换字符串中某个位置的字符.占位符:%s:可以替换任意类型%d:可以替换数字类型 需要掌握的#1.strip去左右两 ...

  10. Golang实现常用排序算法

    主函数package main import ( "fmt" "math/rand" "sort" "time") co ...