1211: [HNOI2004]树的计数

题目:传送门

题解:

   今天刚学prufer序列,先打几道简单题

   首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数为k,那么在prufer序列里面这个节点就会出现k-1次

   (反过来也同理成立)

   那么具体的原因这里有解释:

   对于任意一个节点在prufer序列里出现一次的话,那么就表示我有一个孩子被删了,那么少了的一次去哪里了呢,因为每次加进去的都是父亲节点,那么少的肯定就是我自己连出去的一条边啊...

  

   知道了这个推论之后,这道题就很简单了:

   题目要求的树必须满足度数的要求,那只要这棵树的prufer序列满足度数要求就ok了啊...

   这样我们就可以用组合数学,直接根据给出的d数组做。

   很容易想到:ans=(n-2)!/(d1-1)!*(d2-1)!....(dn-1)! (如果是入度小于二的话不用计算)

   刚开始傻逼比的打全排列...有重复啊啊啊啊!!!

   最后一点:题目保证方案数不会超过10^17,那long long 肯定没问题啊...可是我们求得是组合,是有除法的(也就是说乘法的时候还是会爆)....ORT那就质因数分解咯...


代码:

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
typedef long long LL;
using namespace std;
int n;
LL d[],pr[];
int s[];
bool pd(LL x)
{
double t=sqrt(double(x+));
for(int i=;i<=t;i++)
if(x%i==)
return false;
return true;
}
LL p_m(LL a,int b)
{
LL ans=;
while(b!=)
{
if(b%==)ans*=a;
b/=;a*=a;
}
return ans;
}
int main()
{
scanf("%d",&n);int sum=;
for(int i=;i<=n;i++){scanf("%d",&d[i]);sum+=d[i];}
if(n== && d[]!=){printf("0\n");return ;}
if(n>)for(int i=;i<=n;i++){if(d[i]==){printf("0\n");return ;}}
if(sum-n!=n-){printf("0\n");return ;}
int len=;
for(LL i=;i<=;i++)if(pd(i)==true)pr[++len]=i;
memset(s,,sizeof(s));
for(int i=;i<=n-;i++)
{
int x=i;
for(int j=;j<=len;j++)
while(x%pr[j]== && x!=)
{s[j]++;x/=pr[j];}
}
for(int i=;i<=n;i++)
for(int k=;k<=d[i]-;k++)
{
int x=k;
for(int j=;j<=len;j++)
while(x%pr[j]== && x!=)
{s[j]--;x/=pr[j];}
}
LL ans=;
for(int i=;i<=;i++)
ans*=p_m(pr[i],s[i]);
printf("%lld\n",ans);
return ;
}

bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)的更多相关文章

  1. bzoj1211: [HNOI2004]树的计数 prufer序列裸题

    一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di ...

  2. BZOJ1211: [HNOI2004]树的计数(prufer序列)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2987  Solved: 1111[Submit][Status][Discuss] Descript ...

  3. bzoj1211: [HNOI2004]树的计数 prufer编码

    题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...

  4. Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数

    最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...

  5. BZOJ 1211 HNOI2004 树的计数 Prufer序列

    题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...

  6. 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度

    [BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...

  7. [HNOI2004] 树的计数 - prufer序列

    给定树每个节点的 degree,问满足条件的树的数目. \(n\leq 150, ans \leq 10^{17}\) Solution 注意特判各种坑点 \(\sum d_i - 1 = n-2\) ...

  8. 树的计数 + prufer序列与Cayley公式(转载)

    原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博 ...

  9. prufer BZOJ1211: [HNOI2004]树的计数

    以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...

随机推荐

  1. 什么叫openapi

    Open API即开放API,也称开放平台. 所谓的开放API(OpenAPI)是服务型网站常见的一种应用,网站的服务商将自己的网站服务封装成一系列API(Application Programmin ...

  2. Socket实现一个简单的半双工通信

    Socket是client进行在网络与server进行数据交互的一种基本通信方式.通信有三种通信.即单工.半双工,和全双工. 所谓单工,就是仅仅可以进行单向通信,如bb机. 而半双工就是一来一回的通信 ...

  3. 【LeetCode-面试算法经典-Java实现】【145-Binary Tree Postorder Traversal(二叉树非递归后序遍历)】

    [145-Binary Tree Postorder Traversal(二叉树非递归后序遍历)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a bin ...

  4. ES索引模板——就是在新建索引时候指定的正则匹配来设置mapping而已,对于自动扩容有用

    索引模板 扩容设计 » 索引模板 Elasticsearch 不要求你在使用一个索引前创建它. 对于日志记录类应用,依赖于自动创建索引比手动创建要更加方便. Logstash 使用事件中的时间戳来生成 ...

  5. 细述 Java垃圾回收机制→Types of Java Garbage Collectors

    细述 Java垃圾回收机制→Types of Java Garbage Collectors 转自:https://segmentfault.com/a/1190000006214497 本文非原创, ...

  6. Go语言结构体转json的坑

    Go语言结构体转json的坑 标签(空格分隔): go json.Marshal() JSON输出的时候必须注意,只有导出的字段(首字母是大写)才会被输出,如果修改字段名,那么就会发现什么都不会输出, ...

  7. Kali linux 2016.2(Rolling)中的Metasploit如何更新与目录结构初步认识

    如何更新MSF 1.Windows平台 方法1: 运行msfupdate.bat 在msfconsole里执行命令svn update 或者 方法2:  2.unix/linux平台 方法1: 运行m ...

  8. springMVC接受对象实体并且对象实体里面又有对象集合方式

    springMVC接受对象实体并且对象实体里面又有对象集合方式: Ajax: function add(){ var orders = [ { orderNo : "H222255" ...

  9. POJ 3273 Monthly Expense 【二分答案】

    题意:给出n天的花费,需要将这n天的花费分成m组,使得每份的和尽量小,求出这个最小的和 看题目看了好久不懂题意,最后还是看了题解 二分答案,上界为这n天花费的总和,下界为这n天里面花费最多的那一天 如 ...

  10. c#获取DataTable某一列不重复的值,或者获取某一列的所有值

    实现该功能是用了DataView的筛选功能,DataView表示用于排序.筛选.搜索.编辑和导航的 DataTable 的可绑定数据的自定义视图. 这里做了一个简单易懂的Demo来讲述该方法. 1.建 ...