1211: [HNOI2004]树的计数

题目:传送门

题解:

   今天刚学prufer序列,先打几道简单题

   首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数为k,那么在prufer序列里面这个节点就会出现k-1次

   (反过来也同理成立)

   那么具体的原因这里有解释:

   对于任意一个节点在prufer序列里出现一次的话,那么就表示我有一个孩子被删了,那么少了的一次去哪里了呢,因为每次加进去的都是父亲节点,那么少的肯定就是我自己连出去的一条边啊...

  

   知道了这个推论之后,这道题就很简单了:

   题目要求的树必须满足度数的要求,那只要这棵树的prufer序列满足度数要求就ok了啊...

   这样我们就可以用组合数学,直接根据给出的d数组做。

   很容易想到:ans=(n-2)!/(d1-1)!*(d2-1)!....(dn-1)! (如果是入度小于二的话不用计算)

   刚开始傻逼比的打全排列...有重复啊啊啊啊!!!

   最后一点:题目保证方案数不会超过10^17,那long long 肯定没问题啊...可是我们求得是组合,是有除法的(也就是说乘法的时候还是会爆)....ORT那就质因数分解咯...


代码:

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
typedef long long LL;
using namespace std;
int n;
LL d[],pr[];
int s[];
bool pd(LL x)
{
double t=sqrt(double(x+));
for(int i=;i<=t;i++)
if(x%i==)
return false;
return true;
}
LL p_m(LL a,int b)
{
LL ans=;
while(b!=)
{
if(b%==)ans*=a;
b/=;a*=a;
}
return ans;
}
int main()
{
scanf("%d",&n);int sum=;
for(int i=;i<=n;i++){scanf("%d",&d[i]);sum+=d[i];}
if(n== && d[]!=){printf("0\n");return ;}
if(n>)for(int i=;i<=n;i++){if(d[i]==){printf("0\n");return ;}}
if(sum-n!=n-){printf("0\n");return ;}
int len=;
for(LL i=;i<=;i++)if(pd(i)==true)pr[++len]=i;
memset(s,,sizeof(s));
for(int i=;i<=n-;i++)
{
int x=i;
for(int j=;j<=len;j++)
while(x%pr[j]== && x!=)
{s[j]++;x/=pr[j];}
}
for(int i=;i<=n;i++)
for(int k=;k<=d[i]-;k++)
{
int x=k;
for(int j=;j<=len;j++)
while(x%pr[j]== && x!=)
{s[j]--;x/=pr[j];}
}
LL ans=;
for(int i=;i<=;i++)
ans*=p_m(pr[i],s[i]);
printf("%lld\n",ans);
return ;
}

bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)的更多相关文章

  1. bzoj1211: [HNOI2004]树的计数 prufer序列裸题

    一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di ...

  2. BZOJ1211: [HNOI2004]树的计数(prufer序列)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2987  Solved: 1111[Submit][Status][Discuss] Descript ...

  3. bzoj1211: [HNOI2004]树的计数 prufer编码

    题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...

  4. Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数

    最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...

  5. BZOJ 1211 HNOI2004 树的计数 Prufer序列

    题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...

  6. 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度

    [BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...

  7. [HNOI2004] 树的计数 - prufer序列

    给定树每个节点的 degree,问满足条件的树的数目. \(n\leq 150, ans \leq 10^{17}\) Solution 注意特判各种坑点 \(\sum d_i - 1 = n-2\) ...

  8. 树的计数 + prufer序列与Cayley公式(转载)

    原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博 ...

  9. prufer BZOJ1211: [HNOI2004]树的计数

    以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...

随机推荐

  1. HDU——T 1498 50 years, 50 colors

    http://acm.hdu.edu.cn/showproblem.php?pid=1498 Time Limit: 2000/1000 MS (Java/Others)    Memory Limi ...

  2. Application Loader提交ipa文件出现ERROR ITMS-90022问题解决方式

    话说在提交app到AppStore时出现了一些问题.网上找了一些资料,但不并具体.因此我做了一个总结,方便我以后遇到时可查询. 也希望能帮助遇到这个问题的提供解决方式. ERROR ITMS-9002 ...

  3. uva_644暴力加字典树解法

    暴力 #include<iostream> #include<string.h> #include<cstdio> using namespace std; int ...

  4. JAVA设计模式之【命令模式】

    命令模式 为了降低耦合度,将请求的发送者和接收者解耦 发送请求的对象只需要哦知道如何发送请求,而不必知道如何完成请求 对请求排队 记录请求日志 支持撤销操作 核心在于引入命令类 角色 抽象命令类Com ...

  5. 使用Networkx进行图的相关计算——黑产集团挖掘,我靠,可以做dns ddos慢速攻击检测啊

    # -*- coding: utf-8 -*- import networkx as nx import matplotlib.pyplot as plt iplist={} goodiplist={ ...

  6. Synergy 共享键盘和鼠标

    直接安装Synergy 不行的话加配置文件 ➜ ~ cat synergy.conf section: screens lab712-PC: ckboss-HP: end section: links ...

  7. Idea配置文件的读取

    开发过程中遇到配置文件读取问题,因此记录以后运用的到. 配置文件位置: 配置文件内容: default_size = 100 grid_size = 20 delayTime = 200 配置文件读取 ...

  8. 百度编辑器UEditor修改成支持物理路径

    一.前言 我虽然工作了2年.有快1年没有做后台的开发了.最近要写个新项目用到富文本编辑器,然后选择用了百度的UEditor.在使用过程中感觉有些不太好.然后就自己手动改一下源码,写得不好请见谅.这只是 ...

  9. 【算法】单源最短路径和任意两点最短路径总结(补增:SPFA)

    [Bellman-Ford算法] [算法]Bellman-Ford算法(单源最短路径问题)(判断负圈) 结构: #define MAX_V 10000 #define MAX_E 50000 int ...

  10. POJ 1182 食物链 (并查集解法)(详细注释)

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 78510   Accepted: 23396 Description ...