洛谷 P3912 素数个数
题目描述
求1,2,\cdots,N1,2,⋯,N 中素数的个数。
输入输出格式
输入格式:
1 个整数NN。
输出格式:
1 个整数,表示素数的个数。
输入输出样例
说明
• 对于40% 的数据,1 \le N \le 10^61≤N≤106;
• 对于80% 的数据,1 \le N \le 10^71≤N≤107;
• 对于100% 的数据,1 \le N \le 10^81≤N≤108。
思路:RE,线性筛一边就可以做出来。bool只占一个字节,所以不会MLE。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,tot;
int prime[];
bool yes[];
void shai(){
memset(yes,true,sizeof(yes));
yes[]=false;
for(int i=;i<=n;i++){
if(yes[i]) prime[++tot]=i;
for(int j=;i*prime[j]<=n;j++){
yes[i*prime[j]]=false;
if(i%prime[j]==) break;
}
}
}
int main(){
scanf("%d",&n);
shai();
cout<<tot;
}
把上面的代码多开一个0 就可以AC了。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,tot;
int prime[];
bool yes[];
void shai(){
memset(yes,true,sizeof(yes));
yes[]=false;
for(int i=;i<=n;i++){
if(yes[i]) prime[++tot]=i;
for(int j=;i*prime[j]<=n;j++){
yes[i*prime[j]]=false;
if(i%prime[j]==) break;
}
}
}
int main(){
scanf("%d",&n);
shai();
cout<<tot;
}
当然听说大佬用了一种叫Meissel Lehmer Algorithm的算法跑的飕飕的。对于我一个蒟蒻来说,这个算法太高级了,诸君还是自行学习吧。我在这里就不粘代码了。
洛谷 P3912 素数个数的更多相关文章
- 洛谷 P1835 素数密度
https://www.luogu.org/problemnew/show/P1835 对于40%,对每个数进行最大$O(\sqrt n)$的判断,因为n比较大所以超时. 想到线性筛,然而我们并不能筛 ...
- [洛谷P1835]素数密度
题目大意:求区间[l,r]中素数的个数($1\leq l,r\le 2^{31}$,$r-l\leq 10^6$). 解题思路:首先,用筛法筛出$2~\sqrt{r}$内的素数. 然后用这些素数筛l~ ...
- 洛谷P3327 约数个数和 结论+莫比乌斯反演
原题 就是让你求\(\sum\limits_{i=1}\sum\limits_{j=1}d(ij)\)(其中\(d(x)\)表示\(x\)的因数个数) 首先有引理(然而并没有证明): \(d(ij)= ...
- 洛谷 [SDOI2015]约数个数和 解题报告
[SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ ...
- 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)
洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式 ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...
- 【数论】8.30题解-prime素数密度 洛谷p1835
prime 洛谷p1835 题目描述 给定区间[L, R](L <= R <= 2147483647, R-L <= 1000000),请计算区间中 素数的个数. 输入输出 输入 两 ...
- [洛谷P2408]不同子串个数
题目大意:给你一个字符串,求其中本质不同的字串的个数 题解:同[洛谷P4070][SDOI2016]生成魔咒,只要最后再输出就行了 卡点:无 C++ Code: #include <cstdio ...
- DP,数论————洛谷P4317 花神的数论题(求1~n二进制中1的个数和)
玄学代码(是洛谷题解里的一位dalao小粉兔写的) //数位DP(二进制)计算出f[i]为恰好有i个的方案数. //答案为∏(i^f[i]),快速幂解决. #include<bits/stdc+ ...
- 求x!在k进制下后缀零的个数(洛谷月赛T1)
求x!在k进制下后缀和的个数 20分: 求十进制下的x!后缀和的个数 40分: 高精求阶乘,直接模拟过程 (我不管反正我不打,本蒟蒻最讨厌高精了) 60分 利用一个定理(网上有求x!在 ...
随机推荐
- BA-强强联手江森自控携手日立空调(转载)
文章出处:http://www.aircon.com.cn 2014年1月6日 艾肯空调制冷网 江森真是非常擅长资本运作,也对技术前沿定义的很明白,快速获得技术靠资本也考内力,内化后就开始市场 ...
- 计算机网络系统--Microsoft Lync 与 腾讯通RTX 对比(转载)
原文网址: http://it.vsharing.com/226.html ------------------------------- 上海大学统一通信平台现在尚未实施,一直在测试微软的Lync. ...
- AlertDialog自己定义View的使用方法+怎样改变弹出框的大小
android系统定义了弹出框,支持我们自己定义布局: public AlertDialog getEditCustomDialog() { LayoutInflater inflater = get ...
- ym—— Android网络框架Volley(终极篇)
转载请注明本文出自Cym的博客(http://blog.csdn.net/cym492224103).谢谢支持! 没看使用过Volley的同学能够,先看看Android网络框架Volley(体验篇)和 ...
- NDK历史版本
https://developer.android.google.cn/ndk/downloads/older_releases.html https://developer.android.goog ...
- 利用机器学习进行DNS隐蔽通道检测——数据收集,利用iodine进行DNS隐蔽通道样本收集
我们在使用机器学习做DNS隐蔽通道检测的过程中,不得不面临样本收集的问题,没办法,机器学习没有样本真是“巧妇难为无米之炊”啊! 本文简单介绍了DNS隐蔽通道传输工具iodine,并介绍如何从iodin ...
- C#+HtmlAgilityPack+Dappe
C#+HtmlAgilityPack+Dappe (转发请注明来源:http://www.cnblogs.com/EminemJK/) 最近因为公司业务需要,又有机会撸winform了,这次的需求是因 ...
- xBIM 学习与应用系列目录
xBIM 实战04 在WinForm窗体中实现IFC模型的加载与浏览 xBIM 实战03 使用WPF技术实现IFC模型的加载与浏览 xBIM 实战02 在浏览器中加载IFC模型文件并设 ...
- 微信公众号测试账号-redirect_uri域名与后台配置不一致,错误代码:10003
微信公众号测试账号-redirect_uri域名与后台配置不一致,错误代码:10003 进入公众平台测试账号. 登录公众账号--"开发者中心"--"公众平台测试账号&qu ...
- Mysql command not found on mac pro
export PATH=${PATH}:/usr/local/mysql/bin If you want this to be run every time you open terminal put ...