算法提高 道路和航路 SPFA 算法
我简单的描述一下题目,题目中所说的有道路和航路:
1.公路是双向的,航路是单向的;
2.公路是正值,航路可正可负;
每一条公路i或者航路i表示成连接城镇Ai(1<=A_i<=T)和Bi(1<=Bi<=T)代价为Ci;每一条公路,Ci的范围为0<=Ci<=10,000;
由于奇怪的运营策略,每一条航路的Ci可能为负的,也就是-10,000<=Ci<=10,000。
对于20%的数据,T<=100,R<=500,P<=500;
对于30%的数据,R<=1000,R<=10000,P<=3000;
对于100%的数据,1<=T<=25000,1<=R<=50000,1<=P<=50000。
输入的第一行包含四个用空格隔开的整数T,R,P,S。(表示共有T个城镇,R条公路,P条航路,求S点到所有城镇的最短路)
接下来R行,描述公路信息,每行包含三个整数,分别表示Ai,Bi和Ci。
接下来P行,描述航路信息,每行包含三个整数,分别表示Ai,Bi和Ci。
1 2 5
3 4 5
5 6 10
3 5 -100
4 6 -100
1 3 -10
NO PATH
5
0
-95
-100
#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
const int MAXN = ;
const int INF=0x7FFFFFFF;
struct edge
{
int to,weight;
};
int T,R,P,S;
vector<edge>adjmap[MAXN];//邻接表
bool in_queue[MAXN];//顶点是否在队列中
int in_sum[MAXN];//顶点入队的次数
int dist[MAXN];//源点到各点的最短路
int path[MAXN];//存储到达i的前一个顶点
int nodesum; //顶点数
int edgesum; //边数
bool spfa(int source)
{
deque< int > dq;
int i,j,x,to;
for(int i = ;i<=T;i++)//初始化函数
{
in_sum[i]= ;
in_queue[i]=false;
dist[i]=INF;
path[i]=-;
}
dq.push_back(source);
in_sum[source]++;
dist[source]=; //到达本身的最短距离为0
in_queue[source]= true;
while(!dq.empty())
{
x = dq.front();
dq.pop_front();
in_queue[x]=false;
for(int i = ;i<adjmap[x].size();i++)
{
to = adjmap[x][i].to;
if((dist[x]<INF) && ( dist[to]>dist[x]+adjmap[x][i].weight) )
{
dist[to] = dist[x]+adjmap[x][i].weight;
path[to] = x;
if(!in_queue[to])
{
in_queue[to] = true;
in_sum[to]++;
if(in_sum[to] == nodesum) return false;
if(!dq.empty())
{
if(dist[to]>dist[dq.front()]) dq.push_back(to);
else dq.push_front(to);
} else dq.push_back(to);
}
}
}
}
return true;
}
void print_path(int x)
{
//输出最小的花费
if(dist[x] == INF)//到不了的路径
cout<<"NO PATH"<<endl;
else cout<<dist[x]<<endl; // 下面是输出路径
// stack<int>s;
// int w = x;
// while(path[w]!=-1)
// {
// s.push(w);
// w=path[w];
// }
// //以下是经过的路径
// while(!s.empty())
// {
// cout<<s.top()<<" ";
// s.pop();
// }
// cout<<endl;
}
int main()
{ edge temp;
int s,e,w;
scanf("%d %d %d %d",&T,&R,&P,&S);
for(int i = ;i<T;i++)
adjmap[i].clear();//清空邻接表
for(int i = ; i<=R; i++)
{
scanf("%d %d %d",&s,&e,&w);
temp.to = e;
temp.weight = w;
adjmap[s].push_back(temp);
temp.to = s;
adjmap[e].push_back(temp);// 公路的是双向的,需要放入两次
}
for(int i = ;i<=P;i++)
{
scanf("%d %d %d",&s,&e,&w);
temp.to = e;
temp.weight = w;
adjmap[s].push_back(temp);
}
if(spfa(S))
{
for(int i =;i<=T; i++ )
print_path(i);
}
// else cout<<"图中存在负权回路"<<endl;
return ;
}
算法提高 道路和航路 SPFA 算法的更多相关文章
- 算法笔记_165:算法提高 道路和航路(Java)
目录 1 问题描述 2解决方案 1 问题描述 问题描述 农夫约翰正在针对一个新区域的牛奶配送合同进行研究.他打算分发牛奶到T个城镇(标号为1..T),这些城镇通过R条标号为(1..R)的道路和P条 ...
- Java实现 蓝桥杯 算法提高 道路和航路
问题描述 农夫约翰正在针对一个新区域的牛奶配送合同进行研究.他打算分发牛奶到T个城镇(标号为1-T),这些城镇通过R条标号为(1-R)的道路和P条标号为(1-P)的航路相连. 每一条公路i或者航路i表 ...
- [hihoCoder] #1093 : 最短路径·三:SPFA算法
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 万圣节的晚上,小Hi和小Ho在吃过晚饭之后,来到了一个巨大的鬼屋! 鬼屋中一共有N个地点,分别编号为1..N,这N个地点之 ...
- 图论——最短路:Floyd,Dijkstra,Bellman-Ford,SPFA算法及最小环问题
一.Floyd算法 用于计算任意两个节点之间的最短路径. 参考了five20的博客 Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个 ...
- SPFA算法学习笔记
一.理论准备 为了学习网络流,先水一道spfa. SPFA算法是1994年西南交通大学段凡丁提出,只要最短路径存在,SPFA算法必定能求出最小值,SPFA对Bellman-Ford算法优化的关键之处在 ...
- 最短路径--SPFA 算法
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...
- 算法提高 金属采集_树形dp
算法提高 金属采集 时间限制:1.0s 内存限制:256.0MB 问题描述 人类在火星上发现了一种新的金属!这些金属分布在一些奇怪的地方,不妨叫它节点好了.一些节点之间有道路相连 ...
- 算法笔记_166:算法提高 金属采集(Java)
目录 1 问题描述 2 解决方案 1 问题描述 问题描述 人类在火星上发现了一种新的金属!这些金属分布在一些奇怪的地方,不妨叫它节点好了.一些节点之间有道路相连,所有的节点和道路形成了一棵树.一共 ...
- 算法笔记_071:SPFA算法简单介绍(Java)
目录 1 问题描述 2 解决方案 2.1 具体编码 1 问题描述 何为spfa(Shortest Path Faster Algorithm)算法? spfa算法功能:给定一个加权连通图,选取一个 ...
随机推荐
- postgres10配置huge_pages
操作系统 修改/boot/grub2/grub.cfg 定位到第一个'menuentry 'CentOS Linux',在"linux16 /vmlinuz"最后面添加 numa= ...
- iOS: 状态栏、导航栏、标签栏、工具栏
三种项目栏总结: 工具栏:UIToolBar 导航栏:UINavigationBar 标签栏:UITabBar UIToolBar的按钮单元为:UIBarButtonItem UINavigati ...
- linux 的计划任务 cron
https://serverfault.com/questions/587696/how-to-restart-php-fpm-from-cron 我也遇到了这个问题,想用cron 来启动php-fp ...
- block的知识点
// // main.m // 1211块练习 // // Created by jerehedu on 14/12/11. // Copyright (c) 2014年 jereh. All ...
- Adobe Acrobat Pro 11安装激活
运行keygen.exe,点击"generate"一次,生成一个序列号(在安装过程中需要填写序列号). 断网,打开软件,直到出现以下界面,点击蓝色字体"连接Interne ...
- Vue 组件通信(子组件向父组件传递数据)
1.自定义事件 <!DOCTYPE html> <html lang="zh"> <head> <meta charset="U ...
- 原来这是一个经典面试题-------Day61
前几天在table的操作中,记录了动态生成表格的三种方式: 1.html语言的拼接:用字符串或者数组拼接在html语言中,这个理解起来最直观 2.插入行和列:insertRow()和insertCel ...
- Intellij IDEA 10.5 语言设置
适应于:英文操作系统,但是语言和区域设置为中文的环境. Mac: /Applications/IntelliJ IDEA CE.app/Contents/bin/idea.vmoptions 增加 - ...
- 【Python】学习笔记四:数学运算
python中的加减乘除比其他的语言简单,不需要对其赋值变量 加减乘除 ) #加法 ) #减法 ) #乘法 ) #除法 5.0 ) #乘方 判断 判断返回的是True或者False ) #等于 Tru ...
- nutch中bin/crawl和bin/nutch crawl的用法(转)
针对上一篇文章中出现的问题:Command crawl is deprecated, please use bin/crawl instead错误信息,今天在官网上查阅了一下,进行了总结. 官网lin ...