弱省互测#0 t1
题意
给一个\(N \times M\)的01网格,1不能走,从起点\((1, 1)\)走到\((N, M)\),每次只能向下或向右走一格,问两条不相交的路径的方案数。(n, m<=1000)
分析
先考虑一条,再考虑去掉相交的情况。
题解
令\(d(a, b, c, d)\)表示从\((a, b)\)走到\((c, d)\)一条路径的方案数,则可以简单得到答案:
\]
我们来考虑任意两条相交路径。
令\(p\)表示这些交点最下最右的点。那么我们将后面那一段路径换一下,也就是原来我往下,现在我往右,原来往右,现在往下。
发现其实这就是\(d(2, 1, n-1, m) + d(1, 2, n, m-1)\)
于是我们减掉后者即可。
#include <bits/stdc++.h>
using namespace std;
const int mo=1e9+7;
int n, m;
char s[2005][2005];
int d[2][2005][2005];
int main() {
scanf("%d%d", &n, &m);
for(int i=1; i<=n; ++i) {
scanf("%s", s[i]+1);
}
d[0][1][1]=d[1][1][1]=1;
for(int i=1; i<=n; ++i) {
for(int j=1; j<=m; ++j) {
if(s[i][j]!='1') {
if(j!=1) {
d[1][i][j]=d[1][i-1][j]+d[1][i][j-1];
if(d[1][i][j]>=mo) {
d[1][i][j]-=mo;
}
}
if(i!=1) {
d[0][i][j]=d[0][i-1][j]+d[0][i][j-1];
if(d[0][i][j]>=mo) {
d[0][i][j]-=mo;
}
}
}
}
}
printf("%lld\n", (1ll*d[0][n][m-1]*d[1][n-1][m]%mo-1ll*d[0][n-1][m]*d[1][n][m-1]%mo+mo)%mo);
return 0;
}
弱省互测#0 t1的更多相关文章
- 弱省互测#0 t3
Case 1 题意 要求给出下面代码的答案然后构造输入. 给一个图, n 个点 m 条边 q 次询问,输出所有点对之间最大权值最小的路径. 题解 把每一个询问的输出看成一条边,建一棵最小生成树. Ca ...
- 弱省互测#0 t2
题意 给定两个字符串 A 和 B,求下面四个问题的答案: 1.在 A 的子串中,不是 B 的子串的字符串的数量. 2.在 A 的子串中,不是 B 的子序列的字符串的数量. 3.在 A 的子序列中,不是 ...
- 【CH 弱省互测 Round #1 】OVOO(可持久化可并堆)
Description 给定一颗 \(n\) 个点的树,带边权. 你可以选出一个包含 \(1\) 顶点的连通块,连通块的权值为连接块内这些点的边权和. 求一种选法,使得这个选法的权值是所有选法中第 \ ...
- 弱省互测#2 t3
题意 给出\(n\)个01字节和\(m\)个01字节,要求用后者去匹配前者,两个串能匹配当且仅当除了每个字节末位不同,其他位都要相同.问匹配后者至少有多少个末位不同.(\(1 \le m \le n ...
- 弱省互测#2 t2
题意 给两个树,大小分别为n和m,现在两棵树各选一些点(包括1),使得这棵树以1号点为根同构(同构就是每个点的孩子数目相同),求最大的同构树.(n, m<=500) 分析 我们从两棵树中各取出一 ...
- 弱省互测#1 t3
题意 给出一棵n个点的树,求包含1号点的第k小的连通块权值和.(\(n<=10^5\)) 分析 k小一般考虑堆... 题解 堆中关键字为\(s(x)+min(a)\),其中\(s(x)\)表示\ ...
- 【loj2461】【2018集训队互测Day 1】完美的队列
#2461. 「2018 集训队互测 Day 1」完美的队列 传送门: https://loj.ac/problem/2461 题解: 直接做可能一次操作加入队列同时会弹出很多数字,无法维护:一个操作 ...
- 【2018集训队互测】【XSY3372】取石子
题目来源:2018集训队互测 Round17 T2 题意: 题解: 显然我是不可能想出来的……但是觉得这题题解太神了就来搬(chao)一下……Orzpyz! 显然不会无解…… 为了方便计算石子个数,在 ...
- 上午小测3 T1 括号序列 && luogu P5658 [CSP/S 2019 D1T2] 括号树 题解
前 言: 一直很想写这道括号树..毕竟是在去年折磨了我4个小时的题.... 上午小测3 T1 括号序列 前言: 原来这题是个dp啊...这几天出了好几道dp,我都没看出来,我竟然折磨菜. 考试的时候先 ...
随机推荐
- Git使用- 基本命令
$ git config --global user.name "Your Name" 全局 name 设置 $ git config --global user.email ...
- MVC中使用Entity Framework 基于方法的查询学习笔记 (二)
解释,不解释: 紧接上文,我们在Visual Studio2012中看到系统为我们自动创建的视图(View)文件Index.cshtml中,开头有如下这句话: @model IEnumerable&l ...
- 设置redis主从出现的问题
314:S 05 Jan 15:12:17.433 # WARNING: The TCP backlog setting of 511 cannot be enforced because /proc ...
- 算法练习_图的连通性问题(JAVA)
一.问题 1.问题描述: 有n个点(1...n),输入整数对(8,9),表示8,9点之间存在相互的连接关系. 动态连通性问题--编写一段程序过滤掉所以无意义的整数对,即为在不破坏图连通性的前提下,以最 ...
- URAL 1827 Indigenous Wars(排序、乱搞)
题意:给一个长度为n数组{a[i]}.有m个操作Ti,Si,Li表示找以Ti值结束,以Si值开始,长度为Li的连续子串.找到后,将区间的答案值设为1.一开始答案值全部为0.最后输出n个答案值. 好久没 ...
- Session在类库中的使用
转自:http://www.cnblogs.com/JiangXiaoTian/articles/3490904.html 网站开发中,为了保存用户的信息,有时候需要使用session.如果我们在as ...
- 【Django】--ModelForm组件
ModelForm a.class Meta: model,#对应Model的 fields=None,#字段 exclude=None,#排除字段 labels=None,#提示信息 help_te ...
- C# 动态调用DLL库
最近经常用到C#动态调用类库,简单的做下记录方便以后查询. 使用下面的几行代码就可以简单实现DLL类库的调用了 using System.Reflection; // 引入该命名空间 // 获取roc ...
- javase-->基础知识(一)
1.JDK安装和和配置 1)安装jdk1.8版本(不同的平台安装不同的jdk). 2)配置:将.../jdk1.x/bin放到path环境变量的最前面(避免之前配的环境变量干扰). ****** ja ...
- cnblogs技术知识共享
首先,我非常感谢cnblogs这么好的一个平台给我们这些计算机方面的人提供这么一个共享的平台! 其次,我希望大家共享知识,共同交流进步! 然后,如果在转载中侵犯了您的权益,请直言,会立刻删除.