目录

1 问题描述

2 解决方案

2.1 蛮力法

2.2 分治法(归并排序)

 


1 问题描述

给定一个随机数数组,求取这个数组中的逆序对总个数。要求时间效率尽可能高。

那么,何为逆序对?

引用自百度百科:

设 A 为一个有 n 个数字的有序集 (n>1),其中所有数字各不相同。
如果存在正整数 i, j 使得 1 ≤ i < j ≤ n 而且 A[i] > A[j],则 <A[i], A[j]> 这个有序对称为 A 的一个逆序对,也称作逆序数。

例如,数组(3,1,4,5,2)的逆序对有(3,1),(3,2),(4,2),(5,2),共4个。


2 解决方案

2.1 蛮力法

初步一看,使用蛮力是最直接也最简单的方法,但是时间效率为O(n^2)。

即从第1个元素,开始依次和后面每一个元素进行大小比较,若大于,则逆序对个数加1。

具体代码如下:

package com.liuzhen.systemExe;

public class Main{

    //蛮力法求取数组A中逆序对数
public int bruteReverseCount(int[] A) {
int result = 0;
for(int i = 0;i < A.length;i++) {
for(int j = i;j < A.length;j++) {
if(A[i] > A[j])
result++;
}
}
return result; } //获取一个随机数数组
public int[] getRandomArray(int n) {
int[] result = new int[n];
for(int i = 0;i < n;i++) {
result[i] = (int)( Math.random() * 50); //生成0~50之间的随机数
}
return result;
} public static void main(String[] args){
long t1 = System.currentTimeMillis();
Main test = new Main();
int[] A = test.getRandomArray(50000);
int result = test.bruteReverseCount(A);
long t2 = System.currentTimeMillis();
System.out.println("使用蛮力法得到结果:"+result+", 耗时:"+(t2 - t1)+"毫秒");
}
}

运行结果(运行3次):

使用蛮力法得到结果:612226389, 耗时:8094毫秒

使用蛮力法得到结果:610311942, 耗时:8015毫秒

使用蛮力法得到结果:610657465, 耗时:8079毫秒

2.2 分治法(归并排序) 

除了蛮力法,此处可以借用归并排序的思想来解决此题,此时时间复杂度为O(n*logn)。归并排序,具体是先进行对半划分,直到最后左半边数组只有一个元素,右半边数组中也只有一个元素时,此时开始进行回溯合并。那么,计算逆序对个数的关键,就在于此处的回溯合并过程,当左半边元素(PS:回溯过程中,左半边和右半边元素均已是升序排序)中出现大于右半边元素时,那么左半边这个元素及其后面的所有元素均大于这个右半边元素,记这些元素个数为len,那么逆序对个数要自增len。

具体代码如下:

package com.liuzhen.systemExe;

public class Main{

    public long count = 0;   //全局变量,使用合并排序,计算逆序对数
//使用归并排序方法计算数组A中的逆序对数
public void getReverseCount(int[] A) {
if(A.length > 1) {
int[] leftA = getHalfArray(A, 0); //数组A的左半边元素
int[] rightA = getHalfArray(A, 1); //数组A的右半边元素
getReverseCount(leftA);
getReverseCount(rightA);
mergeArray(A, leftA, rightA);
}
}
//根据judge值判断,获取数组A的左半边元素或者右半边元素
public int[] getHalfArray(int[] A, int judge) {
int[] result;
if(judge == 0) { //返回数组A的左半边
result = new int[A.length / 2];
for(int i = 0;i < A.length / 2;i++)
result[i] = A[i];
} else { //返回数组的右半边
result= new int[A.length - A.length / 2];
for(int i = 0;i < A.length - A.length / 2;i++)
result[i] = A[A.length / 2 + i];
}
return result;
}
//合并数组A的左半边和右半边元素,并按照非降序序列排列
public void mergeArray(int[] A, int[] leftA, int[] rightA) {
int len = 0;
int i = 0;
int j = 0;
int lenL = leftA.length;
int lenR = rightA.length;
while(i < lenL && j < lenR) {
if(leftA[i] > rightA[j]) {
A[len++] = rightA[j++]; //将rightA[j]放在leftA[i]元素之前,那么leftA[i]之后lenL - i个元素均大于rightA[j]
count += (lenL - i); //合并之前,leftA中元素是非降序排列,rightA中元素也是非降序排列。所以,此时就新增lenL - i个逆序对
} else {
A[len++] = leftA[i++];
}
}
while(i < lenL)
A[len++] = leftA[i++];
while(j < lenR)
A[len++] = rightA[j++];
}
//获取一个随机数数组
public int[] getRandomArray(int n) {
int[] result = new int[n];
for(int i = 0;i < n;i++) {
result[i] = (int)( Math.random() * 50); //生成0~50之间的随机数
}
return result;
} public static void main(String[] args){
long t1 = System.currentTimeMillis();
Main test = new Main();
int[] A = test.getRandomArray(50000);
test.getReverseCount(A);
long t2 = System.currentTimeMillis();
System.out.println("分治法得到结果:"+test.count+", 耗时:"+(t2 - t1)+"毫秒");
}
}

运行结果(运行3次):

分治法得到结果:612226489, 耗时:36毫秒

分治法得到结果:610481152, 耗时:35毫秒

分治法得到结果:612161208, 耗时:32毫秒

参考资料:

1. 归并排序求逆序对

算法笔记_065:分治法求逆序对(Java)的更多相关文章

  1. 算法笔记_044:表达式计算求值(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 输入一个只包含加减乖除和括号的合法表达式,求表达式的值.其中除表示整除. 输入格式 输入一行,包含一个表达式. 输出格式 输出这个表达式的 ...

  2. 分治法求一个N个元素数组的逆序数

    背景  逆序数:也就是说,对于n个不同的元素,先规定各元素之间有一个标准次序(例如n个 不同的自然数,可规定从小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时, ...

  3. HDU 4911 http://acm.hdu.edu.cn/showproblem.php?pid=4911(线段树求逆序对)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4911 解题报告: 给出一个长度为n的序列,然后给出一个k,要你求最多做k次相邻的数字交换后,逆序数最少 ...

  4. 求逆序对常用的两种算法 ----归并排 & 树状数组

    网上看了一些归并排求逆序对的文章,又看了一些树状数组的,觉得自己也写一篇试试看吧,然后本文大体也就讲个思路(没有例题),但是还是会有个程序框架的 好了下面是正文 归并排求逆序对 树状数组求逆序对 一. ...

  5. 《github一天一道算法题》:分治法求数组最大连续子序列和

    看书.思考.写代码. /*************************************** * copyright@hustyangju * blog: http://blog.csdn. ...

  6. wikioi 1688 求逆序对

    /*=========================================================== wikioi 1688 求逆序对 时间限制: 1 s 空间限制: 12800 ...

  7. 归并排序&&归并排序求逆序对

    归并排序 归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序 ...

  8. 归并排序(归并排序求逆序对数)--16--归并排序--Leetcode面试题51.数组中的逆序对

    面试题51. 数组中的逆序对 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数. 示例 1: 输入: [7,5,6,4] 输出 ...

  9. 浙江工商大学15年校赛I题 Inversion 【归并排序求逆序对】

    Inversion Time Limit 1s Memory Limit 131072KB Judge Program Standard Ratio(Solve/Submit) 15.00%(3/20 ...

随机推荐

  1. 循序渐进PYTHON3(十三) --3-- DJANGO之FORM表单(为自动生成的HTML标签添加样式)

    views.py from django.shortcuts import render,HttpResponse from django import forms import json impor ...

  2. 洛谷——P2381 圆圆舞蹈

    P2381 圆圆舞蹈 题目描述 熊大妈的乃修在时针的带领下,围成了一个圆圈舞蹈,由于没有严格的教育,奶牛们之间的间隔不一致. 奶牛想知道两只最远的奶牛到底隔了多远.奶牛A到B的距离为A顺时针走和逆时针 ...

  3. POJ ???? Monkey King

      题目描述 Once in a forest, there lived N aggressive monkeys. At the beginning, they each does things i ...

  4. 【转载】随机生成k个范围为1-n的随机数,其中有多少个不同的随机数?

    来源:http://www.cnblogs.com/haolujun/archive/2012/11/11/2765102.html 假如现在让你随机生成k个范围在1-n内的随机数,那么你能得到多少个 ...

  5. JSON语法及JSON定义规范化

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://www.cnblogs.com/zhuhui-site/p/10090541.html 一.前言   JSON(JavaScrip ...

  6. window下命令行的方式安装svn服务端

    下载Binary Packages类型的 安装文件  https://www.visualsvn.com/server/download/  自己选择版本 第一步 :开始安装到 c:/software ...

  7. 使用hosts.allow和hosts.deny实现简单的防火墙

    说明:我建议学习防火墙只单一学习一种就够了,这种方式虽然简单和快速,但也有些不太灵活,所以如果要深入防火墙建议转iptables  一.背景简介 在Linux上多用iptables来限制ssh和tel ...

  8. Android Broadcast Security(转)

    原文地址:http://drops.wooyun.org/tips/4393 0x00 科普 Broadcast Recevier 广播接收器是一个专注于接收广播通知信息,并做出对应处理的组件.很多广 ...

  9. Delphi 中ASSERT用法

    http://blog.csdn.net/dongyonggan/article/details/5780979 用法:ASSERT(表达式) 如果为假,ASSERT会产生一个EASSERTIONFA ...

  10. 用 Jenkins + .netcore 2.0 构建

    上一篇是关于 .net framework 框架的, 今天是关于 .netcore 2.0 的 这里为大家分享 配置中踩到的坑 cd %WORKSPACE%\"需要还原的项目目录" ...