【(博弈)dfs序+树状数组】BZOJ2819-Nim
【题目大意】
普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取。谁不能取谁输。这个游戏是有必胜策略的。现在对每一堆编号1,2,3,4,...n,在堆与堆间连边,没有自环与重边,从任意堆到任意堆都只有唯一一条路径可到达。然后他不停地进行如下操作:
1.随机选两个堆v,u,询问若在v到u间的路径上的石子堆中玩Nim游戏,是否有必胜策略,如果有,vfleaking将会考虑将这些石子堆作为初始局面之一,用来坑玩家。
2.把堆v中的石子数变为k。
【思路】
对于普通的Nim游戏,如果所有石子数量异或和为1,则必胜,否则不能。
现在这些堆组成了一棵树,我们用query(x)表示从x到根节点的异或值,显然u到v的路径上的异或和胃query(u) xor query(v) xor (num[lca(u,v)])(因为它们的最近公共祖先被重复异或了两次,抵消掉了,所以又要异或回来。)
第一种做法就是用数量剖分,映射到线段树上去解决。
由于每个u的值改变,它仅仅会影响到它及它子树的query值,而且一个节点及其子树的dfs序是连续的,可以用树状数组来维护一下。
关于利用dfs序相同性质的一道题目,和AC自动机结合更困难些→♦
树状数组维护xor和维护和一个道理,相当于一个区间修改点查询的树状数组。注意一下修改操作的方法:delta=num[u]^v,这样异或的时候原来的num[u]就抵消了,留下了v。这比较简单,但是不要忘记了修改后要num[u]→v。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int MAXN=+;
const int DEG=;
vector<int> E[MAXN];
int start[MAXN],end[MAXN];
int n,num[MAXN],e[MAXN];
int anc[MAXN][DEG],dep[MAXN];
int cnt=; void addedge(int u,int v)
{
E[u].push_back(v);
E[v].push_back(u);
} /*树状数组区间修改点查询部分*/
int lowbit(int x)
{
return (x&(-x));
} void modify(int x,int y,int delta)
{
if (x<y) swap(x,y);
x++;
while (x<MAXN) e[x]^=delta,x+=lowbit(x);
while (y<MAXN) e[y]^=delta,y+=lowbit(y);
} int query(int x)
{
int ret=;
while(x) ret^=e[x],x-=lowbit(x);
return ret;
} /*dfs序部分及lca的初始化*/
void dfs(int u,int fa,int d)
{
dep[u]=d;
anc[u][]=fa;
start[u]=++cnt;
for (int i=;i<E[u].size();i++)
if (E[u][i]!=fa) dfs(E[u][i],u,d+);
end[u]=cnt;
} /*lca部分*/
void getanc()
{
for (int i=;i<DEG;i++)
for (int j=;j<=n;j++)
anc[j][i]=anc[anc[j][i-]][i-];
} int swim(int u,int H)
{
int i=;
while (H)
{
if (H&) u=anc[u][i];
i++;
H>>=;
}
return u;
} int lca(int u,int v)
{
if (dep[u]<dep[v]) swap(u,v);
u=swim(u,dep[u]-dep[v]);
if (u==v) return u;
for (int i=DEG-;i>=;i--)
{
if (anc[u][i]!=anc[v][i])
{
u=anc[u][i];
v=anc[v][i];
}
}
return anc[u][];
} /*main*/
void init()
{
scanf("%d",&n);
for (int i=;i<=n;i++) scanf("%d",&num[i]);
for (int i=;i<n-;i++)
{
int u,v;
scanf("%d%d",&u,&v);
addedge(u,v);
}
dfs(,,);
getanc();
memset(e,,sizeof(e));
for (int i=;i<=n;i++) modify(start[i],end[i],num[i]);
} void solve()
{
int q;
scanf("%d",&q);
for (int i=;i<q;i++)
{
char c[];int u,v;
scanf("%s%d%d",c,&u,&v);
if (c[]=='Q')
{
int LCA=lca(u,v);
int ans=query(start[u])^query(start[v])^num[LCA];
if (ans) puts("Yes");else puts("No");
}
else
{
modify(start[u],end[u],num[u]^v);
num[u]=v;
}
}
} int main()
{
init();
solve();
return ;
}
【(博弈)dfs序+树状数组】BZOJ2819-Nim的更多相关文章
- 【bzoj2819】Nim DFS序+树状数组+倍增LCA
题目描述 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游戏是有必胜策略 ...
- 【BZOJ】2819: Nim(树链剖分 / lca+dfs序+树状数组)
题目 传送门:QWQ 分析 先敲了个树链剖分,发现无法AC(其实是自己弱,懒得debug.手写栈) 然后去学了学正解 核心挺好理解的,$ query(a) $是$ a $到根的异或和. 答案就是$ l ...
- HDU 3887:Counting Offspring(DFS序+树状数组)
http://acm.hdu.edu.cn/showproblem.php?pid=3887 题意:给出一个有根树,问对于每一个节点它的子树中有多少个节点的值是小于它的. 思路:这题和那道苹果树是一样 ...
- HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...
- Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组
C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...
- BZOJ 2434: [Noi2011]阿狸的打字机( AC自动机 + DFS序 + 树状数组 )
一个串a在b中出现, 那么a是b的某些前缀的后缀, 所以搞出AC自动机, 按fail反向建树, 然后查询(x, y)就是y的子树中有多少是x的前缀. 离线, 对AC自动机DFS一遍, 用dfs序+树状 ...
- 【bzoj3881】[Coci2015]Divljak AC自动机+树链的并+DFS序+树状数组
题目描述 Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: “1 P”,Bob往自己的集合里添加了一个字符串P. ...
- [BZOJ1103][POI2007]大都市meg dfs序+树状数组
Description 在经济全球化浪潮的影响下,习惯于漫步在清晨的乡间小路的邮递员Blue Mary也开始骑着摩托车传递邮件了.不过,她经常回忆起以前在乡间漫步的情景.昔日,乡下有依次编号为1..n ...
- 2018.10.20 NOIP模拟 巧克力(trie树+dfs序+树状数组)
传送门 好题啊. 考虑前面的32分,直接维护后缀trietrietrie树就行了. 如果#号不在字符串首? 只需要维护第一个#前面的字符串和最后一个#后面的字符串. 分开用两棵trie树并且维护第一棵 ...
- HDU 5293 Annoying problem 树形dp dfs序 树状数组 lca
Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 Description Coco has a tree, w ...
随机推荐
- HTML/CSS/JS编码规范
最近整理了一份HTML/CSS/JS编码规范,供大家参考.目录:一.HTML编码规范二.CSS编码规范三.JS编码规范 一.HTML编码规范 1. img标签要写alt属性 根据W3C标准,img标签 ...
- 移动端 H5 页面注意事项
1. 单个页面内容不能过多 设计常用尺寸:750 x 1334 / 640 x 1134,包含了手机顶部信号栏的高度. 移动端H5活动页面常常需要能够分享到各种社交App中,常用的有 微信.QQ 等. ...
- ImageView设置边框 以及内部图片居中显示 在AndroidStudio中添加shape.xml文件
效果如图 边框设置:shape文件 <shape xmlns:android="http://schemas.android.com/apk/res/android"> ...
- Spring Cloud与Spring Boot的关系
1.Spring Cloud是一个工具集:Spring Cloud是在Spring Boot的基础上构建的,用于简化分布式系统构建的工具集:使架构师在创建和发布微服务时极为便捷和有效. Sp ...
- Git常规配置与基本用法
Git环境配置 一. 全局配置 1. 配置文件 git全局配置文件.gitconfig默认在当前系统用户文件夹下,window可运行%USERPROFILE%查找,Mac系统在cd ~查找. 具体配置 ...
- fork与printf缓冲问题
printf输出条件: (1) 调用fflush: (2) 缓冲区满了: (3) 遇到\n \r这些字符 (4) 遇到scanf这些要取缓冲区的: (5) 线程或者进程退出: fork之后会拷贝父进程 ...
- python的时间和日期--time、datetime应用
time >>> import time >>> time.localtime() #以time.struct_time类型,打印本地时间 time.struct_ ...
- mongodb 学习笔记 3 --- 查询
在mongodb的查询中可以通过使用如下操作符进行深度查询 1.条件操作符 $gt $gte : > >= {"age":{"$gt":18 ...
- mssql批量刷新多个表的数据
DECLARE @SQL VARCHAR(MAX)SELECT @SQL=ISNULL(@SQL,'')+' UPDATE '+NAME+' SET B=3 WHERE B=2'FROM SYSOBJ ...
- PHP常用函数总结(180多个)
PHP常用函数总结 数学函数 1.abs(): 求绝对值 $abs = abs(-4.2); //4.2 数字绝对值数字 2.ceil(): 进一法取整 echo ceil(9.999); // 10 ...