Flight Boarding Optimization

题目连接:

http://codeforces.com/gym/100269/attachments

Description

Peter is an executive boarding manager in Byteland airport. His job is to optimize the boarding process.

The planes in Byteland have s rows, numbered from 1 to s. Every row has six seats, labeled A to F.

F

E

D

C

B

A

1 2 3 4 5 6 7 8 9 10

...

...

...

...

...

...

s

Boarding

There are n passengers, they form a queue and board the plane one by one. If the i-th passenger sits in

a row ri then the difficulty of boarding for him is equal to the number of passengers boarded before him

and sit in rows 1 . . . ri −1. The total difficulty of the boarding is the sum of difficulties for all passengers.

For example, if there are ten passengers, and their seats are 6A, 4B, 2E, 5F, 2A, 3F, 1C, 10E, 8B, 5A,

in the queue order, then the difficulties of their boarding are 0, 0, 0, 2, 0, 2, 0, 7, 7, 5, and the total

difficulty is 23.

To optimize the boarding, Peter wants to divide the plane into k zones. Every zone must be a continuous

range of rows. Than the boarding process is performed in k phases. On every phase, one zone is selected

and passengers whose seats are in this zone are boarding in the order they were in the initial queue.

In the example above, if we divide the plane into two zones: rows 5–10 and rows 1–4, then during the first

phase the passengers will take seats 6A, 5F, 10E, 8B, 5A, and during the second phase the passengers

will take seats 4B, 2E, 2A, 3F, 1C, in this order. The total difficulty of the boarding will be 6.

Help Peter to find the division of the plane into k zones which minimizes the total difficulty of the

boarding, given a specific queue of passengers.

Input

The first line contains three integers n (1 ≤ n ≤ 1000), s (1 ≤ s ≤ 1000), and k (1 ≤ k ≤ 50; k ≤ s).

The next line contains n integers ri (1 ≤ ri ≤ s).

Each row is occupied by at most 6 passengers.

Output

Output one number, the minimal possible difficulty of the boarding

Sample Input

10 12 2

6 4 2 5 2 3 1 11 8 5

Sample Output

6

Hint

题意

现在有n个人,s个位置和你可以划分长k个区域

你可以把s个位置划分成k个区域,这样每个人坐下你的代价是该区域内,在你之前比你小的人的数量

问你怎么划分这s个位置(当然,每个区域必须是连续的),才能使得总代价最小

输出代价

题解:

数据范围1000,显然的dp

dp[i][j]表示第i个位置是第j个区域的结尾,然后暴力转移就好了

用树状数组预处理sum[i][j],表示第i个位置和第j个位置划分在一起的代价是多少

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1050;
int dp[maxn][55];
int sum[maxn][maxn];
int r[maxn];
int n,m,k;
int a[maxn];
vector<int> E[maxn];
int lowbit(int x)
{
return x&(-x);
}
int get(int x)
{
int ans = 0;
for(int i=x;i;i-=lowbit(i))
ans+=a[i];
return ans;
}
void update(int x,int v)
{
for(int i=x;i<maxn;i+=lowbit(i))
a[i]+=v;
}
int main()
{
freopen("flight.in","r",stdin);
freopen("flight.out","w",stdout);
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++)
{
scanf("%d",&r[i]);
E[r[i]-1].push_back(i);
}
for(int i=0;i<m;i++)
{
memset(a,0,sizeof(a));
for(int j=i;j<m;j++)
{
if(i!=j)sum[i][j]=sum[i][j-1];
for(int t=0;t<E[j].size();t++)
sum[i][j]+=get(E[j][t]);
for(int t=0;t<E[j].size();t++)
update(E[j][t],1);
}
} for(int i=0;i<=m;i++)
for(int j=0;j<=k;j++)
dp[i][j]=1e9;
dp[0][0]=0;
for(int i=0;i<m;i++)
for(int j=0;j<k;j++)
{
if(dp[i][j]==1e9)continue;
for(int t=i;t<m;t++)
dp[t+1][j+1]=min(dp[t+1][j+1],dp[i][j]+sum[i][t]);
}
cout<<dp[m][k]<<endl;
}

Codeforces Gym 100269F Flight Boarding Optimization 树状数组维护dp的更多相关文章

  1. Codeforces Testing Round #12 C. Subsequences 树状数组维护DP

    C. Subsequences Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/597/probl ...

  2. Gym - 100269F Flight Boarding Optimization(dp+树状数组)

    原题链接 题意: 现在有n个人,s个位置和你可以划分长k个区域你可以把s个位置划分成k个区域,这样每个人坐下你的代价是该区域内,在你之前比你小的人的数量问你怎么划分这s个位置(当然,每个区域必须是连续 ...

  3. Codeforces 946G Almost Increasing Array (树状数组优化DP)

    题目链接   Educational Codeforces Round 39 Problem G 题意  给定一个序列,求把他变成Almost Increasing Array需要改变的最小元素个数. ...

  4. Codeforces Gym 100114 H. Milestones 离线树状数组

    H. Milestones Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descripti ...

  5. [poj3378] Crazy Thairs (DP + 树状数组维护 + 高精度)

    树状数组维护DP + 高精度 Description These days, Sempr is crazed on one problem named Crazy Thair. Given N (1 ...

  6. 【题解】ARC101F Robots and Exits(DP转格路+树状数组优化DP)

    [题解]ARC101F Robots and Exits(DP转格路+树状数组优化DP) 先删去所有只能进入一个洞的机器人,这对答案没有贡献 考虑一个机器人只能进入两个洞,且真正的限制条件是操作的前缀 ...

  7. Playrix Codescapes Cup (Codeforces Round #413, rated, Div. 1 + Div. 2) C. Fountains 【树状数组维护区间最大值】

    题目传送门:http://codeforces.com/contest/799/problem/C C. Fountains time limit per test 2 seconds memory ...

  8. Codeforces 216D Spider&#39;s Web 树状数组+模拟

    题目链接:http://codeforces.com/problemset/problem/216/D 题意: 对于一个梯形区域,假设梯形左边的点数!=梯形右边的点数,那么这个梯形为红色.否则为绿色, ...

  9. Codeforces Round #413 (Div1 + Div. 2) C. Fountains(树状数组维护最大值)

    题目链接:https://codeforces.com/problemset/problem/799/C 题意:有 c 块硬币和 d 块钻石,每种喷泉消耗硬币或钻石中的一种,每个喷泉有一个美丽值,问建 ...

随机推荐

  1. windows下常用快捷键(转)

    原文转自 https://blog.csdn.net/LJFPHP/article/details/78818696 win+E                 打开文件管器 win+D        ...

  2. 【Windows使用笔记】使Onedrive同步任意文件夹

    因为度盘实在是有点垃圾,经常看的剧之类的或者其他软件资源啥的动不动就被封. 所以跑去某宝买了一个5T的企业子账号,安全性不清楚,重要的隐私数据反正都用移动硬盘备份了.主要就是存一些资源性的文件吧.而且 ...

  3. linux===启动sdk manager下载配置sdk的时候报错的解决办法

    当启动sdk manager下载配置sdk的时候,报错如下: botoo@botoo-virtual-machine:/opt/android-sdk-linux/tools$ sudo  ./and ...

  4. jython

    # -*- coding: utf-8 -*- import sys import json sys.path += ["C:/Users/yangbo/Desktop/restassure ...

  5. tornado当用户输入的URL无效时转入设定的页面

    今天做web的测验..坑爹的要用tornado...作为一个比较新的用的人还不多的东东...查资料好麻烦.. 下面是当用户输入非法 url时, 显示一个自定义 404 页面提示用户,其访问的页面不存在 ...

  6. 【Educational Codeforces Round 19】

    这场edu蛮简单的…… 连道数据结构题都没有…… A.随便质因数分解凑一下即可. #include<bits/stdc++.h> #define N 100005 using namesp ...

  7. C++11——Use auto keyword in C++11

    版权声明:本文系原创,转载请注明来源. Compile your program with: g++ -std=c++ -o target_name filen_ame.cpp or: g++ -st ...

  8. JS对象转化为JSON字符串

    js方法: JSON.stringify 把一个对象转换成json字符串 JSON.parse 把一个json字符串解析成对象. 实例: var jsObj = {}; jsObj.testArray ...

  9. python插入oracle数据

    # coding=utf- ''''' Created on -- @author: ''' import json; import urllib2 import sys import cx_Orac ...

  10. mac date命令

    usage: date [-jnu] [-d dst] [-r seconds] [-t west] [-v[+|-]val[ymwdHMS]] ... [-f fmt date | [[[mm]dd ...