[洛谷P3950]部落冲突
题目大意:给你一棵树,有$3$个操作:
- $Q\;p\;q:$询问$p,q$是否连通
- $C\;p\;q:$把$p->q$这条边割断
- $U\;x:$恢复第$x$次操作二
题解:可以在割断时把这条边赋值上$1$,恢复时赋成$0$,只需要求$p->q$路径和是否为$0$即可,可以用$dfs$序+树状数组维护
卡点:$LCA$越界
C++ Code:
#include <cstdio>
#include <cctype>
#include <algorithm>
namespace __IO {
namespace R {
int x, ch;
inline int read() {
ch = getchar();
while (isspace(ch)) ch = getchar();
for (x = ch & 15, ch = getchar(); isdigit(ch); ch = getchar()) x = x * 10 + (ch & 15);
return x;
}
}
}
using __IO::R::read; #define maxn 300010 int head[maxn], cnt;
struct Edge {
int to, nxt;
} e[maxn << 1];
inline void add(int a, int b) {
e[++cnt] = (Edge) {b, head[a]}; head[a] = cnt;
} int n, m;
#define M 20
int fa[maxn][M], sz[maxn], dep[maxn], dfn[maxn], idx;
void dfs(int u) {
dfn[u] = ++idx;
sz[u] = 1;
for (int i = 1; i < M; i++) fa[u][i] = fa[fa[u][i - 1]][i - 1];
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != *fa[u]) {
*fa[v] = u;
dep[v] = dep[u] + 1;
dfs(v);
sz[u] += sz[v];
}
}
} inline int LCA(int x, int y) {
if (x == y) return x;
if (dep[x] < dep[y]) std::swap(x, y);
for (int i = dep[x] - dep[y]; i; i &= i - 1) x = fa[x][__builtin_ctz(i)];
if (x == y) return x;
for (int i = M - 1; ~i; i--) if (fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i];
return *fa[x];
} namespace BIT {
int Tr[maxn], res;
inline void modify(int p, int num) {for (; p <= n; p += p & -p) Tr[p] += num;}
inline int query(int p) {for (res = 0; p; p &= p - 1) res += Tr[p]; return res;}
} inline void modify(int x, int num) {
BIT::modify(dfn[x], num);
BIT::modify(dfn[x] + sz[x], -num);
}
inline void query(int x, int y) {
int res = BIT::query(dfn[x]) + BIT::query(dfn[y]) - BIT::query(dfn[LCA(x, y)]) * 2;
puts(res ? "No" : "Yes");
} int war[maxn], Tim;
int main() {
n = read(), m = read();
for (int i = 1, a, b; i < n; i++) {
a = read(), b = read();
add(a, b);
add(b, a);
}
dfs(1);
while (m --> 0) {
int x, y;
char op = getchar();
while (!isalpha(op)) op = getchar();
switch (op) {
case 'Q':
x = read(), y = read();
query(x, y);
break;
case 'C':
x = read(), y = read();
if (dep[x] < dep[y]) std::swap(x, y);
war[++Tim] = x;
modify(x, 1);
break;
case 'U':
x = read();
modify(war[x], -1);
break;
}
}
return 0;
}
[洛谷P3950]部落冲突的更多相关文章
- 洛谷 P3950 部落冲突 树链剖分
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例1 输出样例1 输入样例2 输出样例2 输入样例3 输出样例3 说明 思路 AC代码 总结 题面 题目链接 P3 ...
- 洛谷P3950 部落冲突 [LCT]
题目传送门 部落冲突 格式难调,体面就不放了. 分析: julao们应该都看得出来就是个$LCT$板子,战争就$cut$,结束就$link$,询问就$find$.没了... 太久没打$LCT$,然后发 ...
- 洛谷P3950 部落冲突(LCT)
洛谷题目传送门 最无脑LCT题解,Dalao们的各种算法都比这个好多啦... 唯一的好处就是只管码代码就好了 开战cut,停战link,询问findroot判连通性 太无脑,应该不用打注释了.常数大就 ...
- 【刷题】洛谷 P3950 部落冲突
题目背景 在一个叫做Travian的世界里,生活着各个大大小小的部落.其中最为强大的是罗马.高卢和日耳曼.他们之间为了争夺资源和土地,进行了无数次的战斗.期间诞生了众多家喻户晓的英雄人物,也留下了许多 ...
- 洛谷:P3950 部落冲突
原题地址:https://www.luogu.org/problemnew/show/P3950 题目简述 给定一棵树,每次给定一个操作,有如下两种: 将某条边染黑 2.询问给定的u,v两点间是否有边 ...
- [题解] 洛谷P3950 部落冲突
传送门 拿到题目,一看 裸LCT (其实是我懒得打,splay又臭又长) 首先,这道题的意思就是删掉一些边 所以常规操作 点权转边权 之后对于战争操作,在对应的边上+1 对于和平操作,在对应的边上-1 ...
- Cogs 2856. [洛谷U14475]部落冲突
2856. [洛谷U14475]部落冲突 ★★★ 输入文件:lct.in 输出文件:lct.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 在一个叫做Travi ...
- 洛谷 U14475 部落冲突 【比赛】 【树链剖分 + 线段树】
题目背景 在一个叫做Travian的世界里,生活着各个大大小小的部落.其中最为强大的是罗马.高卢和日耳曼.他们之间为了争夺资源和土地,进行了无数次的战斗.期间诞生了众多家喻户晓的英雄人物,也留下了许多 ...
- lupgu P3950 部落冲突
题目链接 luogu P3950 部落冲突 题解 树剖线段树可以 lct还行 代码 #include<cstdio> #include<algorithm> inline in ...
随机推荐
- Spring的cache缓存介绍
从3.1开始,Spring引入了对Cache的支持.其使用方法和原理都类似于Spring对事务管理的支持.Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该 ...
- Qt-第一个QML程序-1-项目工程的建立
这个小程序是我发的第一个完整的QMl程序,这个程序也会持续的更新,一步一步的完善起来,最后会有一个什么样的结果也是不知道,只是把自己目前掌握的QML相关的东西都慢慢的写进来,积累起来 先展示一下运行结 ...
- 使用 Gradle 配置java项目
注意点 除非调试,不要print ,否则任务不会按照依赖的顺序执行,因为我们自己喜欢调试用print,但是会打乱执行顺序. 排除测试文件: sourceSets.main.java { srcDir ...
- day-14 回归中的相关系数和决定系数概念及Python实现
衡量一个回归模型常用的两个参数:皮尔逊相关系数和R平方 一.皮尔逊相关系数 在统计学中,皮尔逊相关系数( Pearson correlation coefficient),又称皮尔逊积矩相关系数(Pe ...
- nordic mesh 任务调度实现
nordic mesh 任务调度实现 nordic mesh的任务调度室基于定时器实现的,有两个链表结构维护任务. 需要注意的是,任务调度的部分接口只能在"bearer event" ...
- jquery datatable 常用例子
在项目中经常用到DataTable,如果DataTable使用得当,不仅能使程序简洁实用,而且能够提高性能,达到事半功倍的效果,现对DataTable的使用技巧进行一下总结. 一.DataTable简 ...
- 五:ResourceManager High Availability RM 高可用
RM有单点失败的风险,但是可以做HA. RMs HA通过master/standby这种结构实现,一个master是active的,其它standby是inactive的.可能通过命令行切换主备节点 ...
- 水仙花数---基于python
# coding:utf-8"""水仙花数是指一个 n 位数(n≥3 ),它的每个位上的数字的 n 次幂之和等于它本身(例如:1^3 + 5^3+ 3^3 = 153) ...
- 自测之Lesson12:信号量
题目:创建一个包含5个信号量的信号集. 完成代码: #include <stdio.h> #include <sys/ipc.h> #include <sys/sem.h ...
- MindManager2018 修改过期时间 配置文件路径
路径:C:\Users\likui\AppData\Roaming\MindManager\MindManager2018.ini 文件中记录了安装时间和最后一次启动时间. [MindManager] ...