题目大意:给你一棵树,有$3$个操作:

  1. $Q\;p\;q:$询问$p,q$是否连通
  2. $C\;p\;q:$把$p->q$这条边割断
  3. $U\;x:$恢复第$x$次操作二

题解:可以在割断时把这条边赋值上$1$,恢复时赋成$0$,只需要求$p->q$路径和是否为$0$即可,可以用$dfs$序+树状数组维护

卡点:$LCA$越界

C++ Code:

#include <cstdio>
#include <cctype>
#include <algorithm>
namespace __IO {
namespace R {
int x, ch;
inline int read() {
ch = getchar();
while (isspace(ch)) ch = getchar();
for (x = ch & 15, ch = getchar(); isdigit(ch); ch = getchar()) x = x * 10 + (ch & 15);
return x;
}
}
}
using __IO::R::read; #define maxn 300010 int head[maxn], cnt;
struct Edge {
int to, nxt;
} e[maxn << 1];
inline void add(int a, int b) {
e[++cnt] = (Edge) {b, head[a]}; head[a] = cnt;
} int n, m;
#define M 20
int fa[maxn][M], sz[maxn], dep[maxn], dfn[maxn], idx;
void dfs(int u) {
dfn[u] = ++idx;
sz[u] = 1;
for (int i = 1; i < M; i++) fa[u][i] = fa[fa[u][i - 1]][i - 1];
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != *fa[u]) {
*fa[v] = u;
dep[v] = dep[u] + 1;
dfs(v);
sz[u] += sz[v];
}
}
} inline int LCA(int x, int y) {
if (x == y) return x;
if (dep[x] < dep[y]) std::swap(x, y);
for (int i = dep[x] - dep[y]; i; i &= i - 1) x = fa[x][__builtin_ctz(i)];
if (x == y) return x;
for (int i = M - 1; ~i; i--) if (fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i];
return *fa[x];
} namespace BIT {
int Tr[maxn], res;
inline void modify(int p, int num) {for (; p <= n; p += p & -p) Tr[p] += num;}
inline int query(int p) {for (res = 0; p; p &= p - 1) res += Tr[p]; return res;}
} inline void modify(int x, int num) {
BIT::modify(dfn[x], num);
BIT::modify(dfn[x] + sz[x], -num);
}
inline void query(int x, int y) {
int res = BIT::query(dfn[x]) + BIT::query(dfn[y]) - BIT::query(dfn[LCA(x, y)]) * 2;
puts(res ? "No" : "Yes");
} int war[maxn], Tim;
int main() {
n = read(), m = read();
for (int i = 1, a, b; i < n; i++) {
a = read(), b = read();
add(a, b);
add(b, a);
}
dfs(1);
while (m --> 0) {
int x, y;
char op = getchar();
while (!isalpha(op)) op = getchar();
switch (op) {
case 'Q':
x = read(), y = read();
query(x, y);
break;
case 'C':
x = read(), y = read();
if (dep[x] < dep[y]) std::swap(x, y);
war[++Tim] = x;
modify(x, 1);
break;
case 'U':
x = read();
modify(war[x], -1);
break;
}
}
return 0;
}

  

[洛谷P3950]部落冲突的更多相关文章

  1. 洛谷 P3950 部落冲突 树链剖分

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例1 输出样例1 输入样例2 输出样例2 输入样例3 输出样例3 说明 思路 AC代码 总结 题面 题目链接 P3 ...

  2. 洛谷P3950 部落冲突 [LCT]

    题目传送门 部落冲突 格式难调,体面就不放了. 分析: julao们应该都看得出来就是个$LCT$板子,战争就$cut$,结束就$link$,询问就$find$.没了... 太久没打$LCT$,然后发 ...

  3. 洛谷P3950 部落冲突(LCT)

    洛谷题目传送门 最无脑LCT题解,Dalao们的各种算法都比这个好多啦... 唯一的好处就是只管码代码就好了 开战cut,停战link,询问findroot判连通性 太无脑,应该不用打注释了.常数大就 ...

  4. 【刷题】洛谷 P3950 部落冲突

    题目背景 在一个叫做Travian的世界里,生活着各个大大小小的部落.其中最为强大的是罗马.高卢和日耳曼.他们之间为了争夺资源和土地,进行了无数次的战斗.期间诞生了众多家喻户晓的英雄人物,也留下了许多 ...

  5. 洛谷:P3950 部落冲突

    原题地址:https://www.luogu.org/problemnew/show/P3950 题目简述 给定一棵树,每次给定一个操作,有如下两种: 将某条边染黑 2.询问给定的u,v两点间是否有边 ...

  6. [题解] 洛谷P3950 部落冲突

    传送门 拿到题目,一看 裸LCT (其实是我懒得打,splay又臭又长) 首先,这道题的意思就是删掉一些边 所以常规操作 点权转边权 之后对于战争操作,在对应的边上+1 对于和平操作,在对应的边上-1 ...

  7. Cogs 2856. [洛谷U14475]部落冲突

    2856. [洛谷U14475]部落冲突 ★★★   输入文件:lct.in   输出文件:lct.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 在一个叫做Travi ...

  8. 洛谷 U14475 部落冲突 【比赛】 【树链剖分 + 线段树】

    题目背景 在一个叫做Travian的世界里,生活着各个大大小小的部落.其中最为强大的是罗马.高卢和日耳曼.他们之间为了争夺资源和土地,进行了无数次的战斗.期间诞生了众多家喻户晓的英雄人物,也留下了许多 ...

  9. lupgu P3950 部落冲突

    题目链接 luogu P3950 部落冲突 题解 树剖线段树可以 lct还行 代码 #include<cstdio> #include<algorithm> inline in ...

随机推荐

  1. ORB-SLAM (四)Initializer单目初始化

    一. 通过对极约束并行计算F和H矩阵初始化 VO初始化目的是为了获得准确的帧间相对位姿,并通过三角化恢复出初始地图点.初始化方法要求适用于不同的场景(特别是平面场景),并且不要进行人为的干涉,例如选取 ...

  2. 更改steam的游戏库

    用记事本打开steam/steamapps/libraryfolders.vdf,然后按照格式添加条目 "LibraryFolders"{ "TimeNextStatsR ...

  3. DMA是什么意思

    DMA是让硬盘不用通过CPU来控制读写 它的意思是直接存储器存取,是一种快速传送数据的机制,DMA技术的重要性在于,利用它进行数据存取时不需要CPU进行干预,可提高系统执行应用程序的效率.利用DMA传 ...

  4. android学习八 多用途碎片

    碎片设计初衷:帮助开发人员管理应用程序功能. 特点:1.大量重用           2.可用性强           3.适应多种布局            碎片 1.包含一个视图层次结构和具有相应 ...

  5. lunix安装

    https://www.cnblogs.com/wcwen1990/p/7630545.html

  6. pip源设置 & pandas安装

    pip的官方源python.pypi.org貌似被墙,换用国内安装源 网上的设置方法都是基于Unix的,Windows下的设置略麻烦. 更新..\Lib\site-packages\pip下的cmdo ...

  7. CSS选择器语法&示例

    CSS3 选择器 在 CSS 中,选择器是一种模式,用于选择需要添加样式的元素. "CSS" 列指示该属性是在哪个 CSS 版本中定义的.(CSS1.CSS2 还是 CSS3.) ...

  8. Python拼接字符串的7种方法

    1.直接通过+操作: s = 'Python'+','+'你好'+'!'print(s) 打印结果: Python,你好! 2.通过join()方法拼接: 将列表转换成字符串 strlist=['Py ...

  9. MySQL连接本地数据库时报1045错误的解决方法

     navicat for MySQL 连接本地数据库出现1045错误 如下图:  说明连接mysql时数据库密码错误,需要修改密码后才可解决问题: 解决步骤如下: .首先打开命令行:开始->运行 ...

  10. Matlab R2016a 破解教程

    郑重声明:图片来源于网络,在这里感谢图片提供者,我写这篇教程,是希望帮助后来者少走弯路,而且,这是一种比较简单有效的破解方法,针对网上那种修改本地文件的方法,在这里不做介绍,如果想体验,可自己百度或谷 ...