内存限制:256 MiB时间限制:100 ms标准输入输出
题目类型:传统评测方式:文本比较
上传者: hzwer

题目描述

给出一个长为 nn 的数列,以及 nn 个操作,操作涉及区间加法,单点查值。

输入格式

第一行输入一个数字 nn。

第二行输入 nn 个数字,第 ii 个数字为 a_iai​,以空格隔开。

接下来输入 nn 行询问,每行输入四个数字 \mathrm{opt}opt、ll、rr、cc,以空格隔开。

若 \mathrm{opt} = 0opt=0,表示将位于 [l, r][l,r] 的之间的数字都加 cc。

若 \mathrm{opt} = 1opt=1,表示询问 a_rar​ 的值(ll 和 cc 忽略)。

输出格式

对于每次询问,输出一行一个数字表示答案。

样例

样例输入

4
1 2 2 3
0 1 3 1
1 0 1 0
0 1 2 2
1 0 2 0

样例输出

2
5

数据范围与提示

对于 100\%100% 的数据,1 \leq n \leq 50000, -2^{31} \leq \mathrm{others}1≤n≤50000,−231≤others、\mathrm{ans} \leq 2^{31}-1ans≤231−1。

代码:

 //#6277. 数列分块入门 1-区间加法,单点查询
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5e4+; int n,m,pos[maxn];
int a[maxn],tag[maxn]; void update(int l,int r,int c)
{
if(pos[l]==pos[r]){//如果在一个块内,直接遍历更新
for(int i=l;i<=r;i++)
a[i]+=c;
}
else{//如果不在同一个块内
for(int i=l;i<=pos[l]*m;i++)//遍历更新完整块左边的部分
a[i]+=c;
for(int i=pos[l]+;i<=pos[r]-;i++)//更新完整的块
tag[i]+=c;
for(int i=(pos[r]-)*m+;i<=r;i++)//更新完整块右边的部分
a[i]+=c;
}
} int main()
{
int n;
scanf("%d",&n);
m=sqrt(n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
pos[i]=(i-)/m+;//块号
for(int i=;i<=n;i++){
int op,l,r,c;
scanf("%d%d%d%d",&op,&l,&r,&c);
if(op==) update(l,r,c);
else printf("%d\n",tag[pos[r]]+a[r]);
}
return ;
}

LOJ #6277. 数列分块入门 1-分块(区间加法、单点查询)的更多相关文章

  1. LOJ #6279. 数列分块入门 3-分块(区间加法、查询区间内小于某个值x的前驱(比其小的最大元素))

    #6279. 数列分块入门 3 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 3   题目描述 给 ...

  2. LOJ #6278. 数列分块入门 2-分块(区间加法、查询区间内小于某个值x的元素个数)

    #6278. 数列分块入门 2 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 6   题目描述 给出 ...

  3. LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)

    #6280. 数列分块入门 4 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论   题目描述 给出一个 ...

  4. LOJ——#6277. 数列分块入门 1

    ~~推荐播客~~ 「分块」数列分块入门1 – 9 by hzwer 浅谈基础根号算法——分块 博主蒟蒻,有缘人可直接观摩以上大佬的博客... #6277. 数列分块入门 1 题目大意: 给出一个长为 ...

  5. HDU 1556 BIT区间修改+单点查询(fread读入优化)

    BIT区间修改+单点查询 [题目链接]BIT区间修改+单点查询 &题解: BIT区间修改+单点查询和求和的bit是一模一样的(包括add,sum) 只不过是你使用函数的方式不一样: 使用区间的 ...

  6. HDU.1556 Color the ball (线段树 区间更新 单点查询)

    HDU.1556 Color the ball (线段树 区间更新 单点查询) 题意分析 注意一下pushdown 和 pushup 模板类的题还真不能自己套啊,手写一遍才行 代码总览 #includ ...

  7. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  8. codevs 1081 线段树练习 2 区间更新 单点查询 无lazy

    题目描述 Description 给你N个数,有两种操作 1:给区间[a,b]的所有数都增加X 2:询问第i个数是什么? 输入描述 Input Description 第一行一个正整数n,接下来n行n ...

  9. 【树状数组区间修改单点查询+分组】HDU 4267 A Simple Problem with Integers

    http://acm.hdu.edu.cn/showproblem.php?pid=4267 [思路] 树状数组的区间修改:在区间[a, b]内更新+x就在a的位置+x. 然后在b+1的位置-x 树状 ...

随机推荐

  1. java获去json所有对象

    public static void main(String args[]){ JSONObject json1=JSONObject.fromObject("{'username' : ' ...

  2. 动态规划:LIS

    题目中的严格二字,表示的意思是不允许≥或者是≤的情况出现,只允许>的情况以及<的情况 经典问题是NOIP合唱队形,在这个题目中,既求了最长上升子序列,也求了最长下降子序列 其最终的结果由两 ...

  3. [Luogu 3958] NOIP2017 D2T1 奶酪

    题目链接 人生第一篇题解,多多关照吧. 注意事项: 1.多组数据,每次要先初始化. 2.因为涉及到开根,所以记得开double. 整体思路: 建图,判断「起点」与「终点」是否连通. 方法可选择搜索(我 ...

  4. consul windows安装

    Consul 是一个支持多数据中心分布式高可用的服务发现和配置共享的服务软件,由 HashiCorp 公司用 Go 语言开发, 基于 Mozilla Public License 2.0 的协议进行开 ...

  5. Git 常见工作流

    多种多样的工作流使得在项目中实施Git时变得难以选择.这份教程提供了一个出发点,调查企业团队最常见的Git工作流. 阅读的时候,请记住工作流应该是一种规范而不是金科玉律.我们希望向你展示所有工作流,让 ...

  6. 【poj3621】最优比率环

    题意: 给定n个点,每个点有一个开心度F[i],每个点有m条单向边,每条边有一个长度d,要求一个环,使得它的 开心度的和/长度和 这个比值最大.n<=1000,m<=5000 题解: 最优 ...

  7. Brave Game HDU1846(巴什博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1846 题目: Problem Description 十年前读大学的时候,中国每年都要从国外引进一些电 ...

  8. C# 文件操作常用方法总结

    需引用 System.IO Path为绝对路径 检测指定目录是否存在 Directory.Exists(Path) 创建目录 Directory.CreateDirectory(Path) 删除目录 ...

  9. Webmin LFD to LFI

    Webmin < 1.290 / Usermin < 1.220 - Arbitrary File Disclosure (Perl) https://www.exploit-db.com ...

  10. Python-字符串处理 str.format()

    Python中内置的%操作符可用于格式化字符串操作,控制字符串的呈现格式.Python中还有其他的格式化字符串的方式,但%操作符的使用是最方便的. 另外python还有一个更强大的字符串处理函数 st ...