分析

近乎裸的 \(cdq\) 分治数点问题

我们考虑一个数被删去,它对删后区间逆序对个数的影响就是减去现存序列中前面比它大的个数再减去现存序列中后面比它小的个数

那么我们考虑如何处理时间限制

既然是“现存序列中”,也就是说删去时间比它晚的

那么能产生贡献的数对 \((i,j)\) 就要满足 \(i < j,val_i > val_j,time_i > time_j\)

这是前面的贡献

而后面的贡献同理,所以我们在每轮分治中算左区间对右区间的贡献以及右区间对左区间的贡献

注意:删后还没删完的若干个数我们让它们的删去时间依次递增

因为没删完的数可以相互贡献,但我们不能重复算同一个数对

所以我们让时间递增,然后取严格大于来算贡献

\(Code\)

#include<cstdio>
#include<algorithm>
#define LL long long
using namespace std; const int N = 1e5 + 5;
int n , m , rd[N] , ans[N] , c[N] , up; struct node{
int a , b , id;
}f[N]; inline bool cmp(node x , node y){return x.a > y.a;}
inline int lowbit(int x){return x & (-x);}
inline void add(int x , int v){for(; x <= up; x += lowbit(x)) c[x] += v;}
inline int query(int x)
{
int res = 0;
for(; x; x -= lowbit(x)) res += c[x];
return res;
} inline void solve(int l , int r)
{
if (l == r) return;
int mid = (l + r) >> 1;
solve(l , mid) , solve(mid + 1 , r);
sort(f + l , f + mid + 1 , cmp) , sort(f + mid + 1 , f + r + 1 , cmp);
int j = l;
for(register int i = mid + 1; i <= r; i++)
{
while (f[j].a > f[i].a && j <= mid) add(f[j].b , 1) , j++;
ans[f[i].id] += query(up) - query(f[i].b);
}
for(register int i = l; i < j; i++) add(f[i].b , -1);
j = r;
for(register int i = mid; i >= l; i--)
{
while (f[j].a < f[i].a && j >= mid + 1) add(f[j].b , 1) , j--;
ans[f[i].id] += query(up) - query(f[i].b);
}
for(register int i = j + 1; i <= r; i++) add(f[i].b , -1);
} int main()
{
scanf("%d%d" , &n , &m);
for(register int i = 1; i <= n; i++) scanf("%d" , &f[i].a) , rd[f[i].a] = f[i].id = i;
int x;
for(register int i = 1; i <= m; i++) scanf("%d" , &x) , f[rd[x]].b = i;
up = m;
for(register int i = 1; i <= n; i++)
if (!f[i].b) f[i].b = ++up; else rd[f[i].b] = i;
solve(1 , n);
LL res = 0;
for(register int i = 1; i <= n; i++) res += (LL)ans[i];
for(register int i = 1; i <= m; i++) printf("%lld\n" , res) , res -= (LL)ans[rd[i]];
}

【CQOI2011】动态逆序对的更多相关文章

  1. BZOJ 3295: [Cqoi2011]动态逆序对

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3865  Solved: 1298[Submit][Sta ...

  2. Bzoj 3295: [Cqoi2011]动态逆序对 分块,树状数组,逆序对

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2886  Solved: 924[Submit][Stat ...

  3. bzoj3295[Cqoi2011]动态逆序对 树套树

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5987  Solved: 2080[Submit][Sta ...

  4. P3157 [CQOI2011]动态逆序对(树状数组套线段树)

    P3157 [CQOI2011]动态逆序对 树状数组套线段树 静态逆序对咋做?树状数组(别管归并QWQ) 然鹅动态的咋做? 我们考虑每次删除一个元素. 减去的就是与这个元素有关的逆序对数,介个可以预处 ...

  5. P3157 [CQOI2011]动态逆序对

    P3157 [CQOI2011]动态逆序对 https://www.luogu.org/problemnew/show/P3157 题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai&g ...

  6. 2018.07.01 BZOJ3295: [Cqoi2011]动态逆序对(带修主席树)

    3295: [Cqoi2011]动态逆序对 **Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j& ...

  7. [BZOJ3295][Cqoi2011]动态逆序对 CDQ分治&树套树

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j,且 ...

  8. bzoj千题计划146:bzoj3295: [Cqoi2011]动态逆序对

    http://www.lydsy.com/JudgeOnline/problem.php?id=3295 正着删除看做倒着添加 对答案有贡献的数对满足以下3个条件: 出现时间:i<=j 权值大小 ...

  9. BZOJ3295: [Cqoi2011]动态逆序对(树状数组套主席树)

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 7465  Solved: 2662[Submit][Sta ...

  10. 洛谷 P3157 [CQOI2011]动态逆序对 解题报告

    P3157 [CQOI2011]动态逆序对 题目描述 对于序列\(A\),它的逆序对数定义为满足\(i<j\),且\(A_i>A_j\)的数对\((i,j)\)的个数.给\(1\)到\(n ...

随机推荐

  1. 修改Listen 1源码的一点心得

    注:本文只作为技术交流 首先感谢听1的作者写出这么强大的音乐播放器!! 软件首页地址:点击打开链接 软件的github上上上地址:点击打开链接 软件唯一让我美中不足的就是不能下载,这可能是作者考虑到了 ...

  2. SSH(一)架包的引入

    一年多未使用了,有些东西真的会忘. 一.ssh的图形化记忆运作流程 二.Struts2.hibernate.spring需要引用的jar包 Struts2: 基本开发:struts-2.3.32\ap ...

  3. JDBC Request 中 Variable names 以及 Result variable name 的使用方法

    1.Variable name 的使用方法 设置好JDBC Connection Configuration.JDBC Request  具体配置百度 如果数据库查询的结果不止一列那就在Variabl ...

  4. day28 BOM浏览器对象 & 定时事件与Cookie & (视频卷子讲解)

    3.10 BOM浏览器对象模型 3.10.1 window对象 所有浏览器都支持window对象,它表示浏览器窗口: | 属性 | history 网页历史记录 返回History只读对象 locat ...

  5. org.apache.poi.openxml4j.exceptions.OLE2NotOfficeXmlFileException: The supplied data appears to be in the OLE2 Format. You are calling the part of POI that deals with OOXML (Office Open XML) Documents

    异常:org.apache.poi.openxml4j.exceptions.OLE2NotOfficeXmlFileException: The supplied data appears to b ...

  6. Windows下使用VSCode搭建IDA Python脚本开发环境

    由于本人是VSCode的重度沉迷用户,需要写代码时总会想起这个软件,因此选择在VSCode中搭建IDA Python的开发环境 本文适用的环境如下: 1.操作系统 windows 2.Python3 ...

  7. [攻防世界][江苏工匠杯]easyphp

    打开靶机url,上来就代码审计 <?php highlight_file(__FILE__); $key1 = 0; $key2 = 0; $a = $_GET['a']; $b = $_GET ...

  8. 第二篇:前端基础之CSS

    CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTML元素. 当浏览器读到一个样式表,它就会按照这个样式表来对文档进行格式化(渲染). CSS语法 CSS实例 ...

  9. 乾坤大挪移,如何将同步阻塞(sync)三方库包转换为异步非阻塞(async)模式?Python3.10实现。

    众所周知,异步并发编程可以帮助程序更好地处理阻塞操作,比如网络 IO 操作或文件 IO 操作,避免因等待这些操作完成而导致程序卡住的情况.云存储文件传输场景正好包含网络 IO 操作和文件 IO 操作, ...

  10. C++ 使用 new 创建二维数组

    1. 直接创建 C++ 使用 new 创建二维数组最直接的方法就是 new T[M][N].返回的指针类型是 T (*)[N],它是指向数组的指针,可以直接使用数组下标形式访问元素.释放内存直接使用d ...