NOIP 模拟赛 简单题
\(\text{Solution}\)
发现题目就是求 \(\sum[\prod_{i=1}^k x_i \le n]\)
\(k \le 10^9\) 太可怕了
然而发现如果限定 \(x_i > 1\) 那么 \(i \le \log n\)
于是我们可以愉快地统计了
设 \(f_i(n)\) 表示将 \(n\) 分成 \(i\) 份使 \(x_i > 1\) 的方案数
那么 \(f_i(n)=\sum_{d|n}f_{i-1}(\frac n d)-f_{i-1}(n)\)
那个减号就是减去 \(d=1\) 时的情况
先不考虑减法,发现它的转移就是 \(Dirichlet\) 前缀和
于是处理 \(f\) 可做到 \(O(n \log n \log\log n)\)
每个询问还要枚举多少个位置不填 \(1\),组合算一下方案
总的就是 \(O(n \log n \log\log n + Q \log n)\)
\(\text{Code}\)
#include <cstdio>
#include <iostream>
#define re register
#define LL long long
using namespace std;
const int N = 5e5 + 5, P = 998244353;
int mxR, mxK, q, log[N], tot, pr[N], vis[N];
LL f[20][N], inv[20];
inline void read(int &x)
{
x = 0; int f = 1; char ch = getchar();
while (!isdigit(ch)) f = (ch == '-' ? -1 : f), ch = getchar();
while (isdigit(ch)) x = (x<<3) + (x<<1) + (ch^48), ch = getchar();
x *= f;
}
void sieve(int n)
{
for(re int i = 2; i <= n; i++)
{
if (!vis[i]) pr[++tot] = i;
for(re int j = 1; j <= tot && pr[j] * i <= n; j++)
{
vis[pr[j] * i] = 1;
if (i % pr[j] == 0) break;
}
}
}
LL Add(LL x, LL y)
{
x += y;
if (x > P) x -= P;
return x;
}
int main()
{
freopen("easy.in", "r", stdin), freopen("easy.out", "w", stdout);
read(mxR), read(mxK), read(q);
sieve(mxR);
for(re int i = 2; i <= mxR; i++) log[i] = log[i >> 1] + 1, f[1][i] = 1;
int lg = log[mxR];
for(re int i = 2; i <= lg; i++)
{
for(re int j = 1; j <= mxR; j++) f[i][j] = f[i - 1][j];
for(re int j = 1; j <= tot; j++)
for(re int k = 1; k * pr[j] <= mxR; k++)
f[i][k * pr[j]] = Add(f[i][k * pr[j]], f[i][k]);
for(re int j = 1; j <= mxR; j++) f[i][j] = Add(f[i][j], P - f[i - 1][j]);
}
for(re int i = 1; i <= lg; i++)
for(re int j = 1; j <= mxR; j++) f[i][j] = Add(f[i][j], f[i][j - 1]);
inv[1] = 1;
for(re int i = 2; i <= lg; i++) inv[i] = (P - P / i) * inv[P % i] % P;
for(int l, r, k; q; q--)
{
read(l), read(r), read(k);
LL ans = 0, c = 1;
for(re int i = 1; i <= log[r]; i++)
{
c = c * (k - i + 1) % P * inv[i] % P;
ans = Add(ans, (f[i][r] - f[i][l - 1] + P) * c % P);
}
printf("%lld\n", ans + (l <= 1));
}
}
NOIP 模拟赛 简单题的更多相关文章
- noip模拟赛 水题
题目描述 LYK出了道水题. 这个水题是这样的:有两副牌,每副牌都有n张. 对于第一副牌的每张牌长和宽分别是xi和yi.对于第二副牌的每张牌长和宽分别是aj和bj.第一副牌的第i张牌能覆盖第二副牌的第 ...
- 2016 10 26考试 NOIP模拟赛 杂题
Time 7:50 AM -> 11:15 AM 感觉今天考完后,我的内心是崩溃的 试题 考试包 T1: 首先看起来是个贪心,然而,然而,看到那个100%数据为n <= 2000整个人就虚 ...
- CH Round #58 - OrzCC杯noip模拟赛day2
A:颜色问题 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2358%20-%20OrzCC杯noip模拟赛day2/颜色问题 题解:算一下每个仆人到它的目的地 ...
- 2016-06-19 NOIP模拟赛
2016-06-19 NOIP模拟赛 by coolyangzc 共3道题目,时间3小时 题目名 高级打字机 不等数列 经营与开发 源文件 type.cpp/c/pas num.cpp/c ...
- 【HHHOJ】NOIP模拟赛 玖 解题报告
点此进入比赛 得分: \(100+20+100=220\)(还不错) 排名: \(Rank\ 16\) \(Rating\):\(+20\) \(T1\):[HHHOJ263]「NOIP模拟赛 玖」三 ...
- 【HHHOJ】NOIP模拟赛 捌 解题报告
点此进入比赛 得分: \(30+30+70=130\)(弱爆了) 排名: \(Rank\ 22\) \(Rating\):\(-31\) \(T1\):[HHHOJ260]「NOIP模拟赛 捌」Dig ...
- NOIP模拟赛 6.29
2017-6-29 NOIP模拟赛 Problem 1 机器人(robot.cpp/c/pas) [题目描述] 早苗入手了最新的Gundam模型.最新款自然有着与以往不同的功能,那就是它能够自动行走, ...
- NOIP模拟赛20161022
NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...
- contesthunter暑假NOIP模拟赛第一场题解
contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...
- 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程
数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...
随机推荐
- 关于python路径的问题思考
我相信你肯定遇到过这样的报错 Traceback (most recent call last): File "main.py", line 549, in <module& ...
- github上fork2.4k,star8.7k的这款状态机,原来长这样!
大家好,我是陶朱公Boy. 前言 上一篇文章<关于状态机的技术选型,最后一个真心好>我跟大家聊了一下关于"状态机"的话题. 于是就有小伙伴私信我,自己项目也考虑引入co ...
- Google Chrome(谷歌浏览器)安装使用
谷歌浏览器官网https://www.google.cn/chrome/ Chrome是由Google开发的一款简单便捷的网页浏览工具.谷歌浏览器(Google Chrome)可以提帮助你快速.安全的 ...
- linux系统中安装虚拟机
在linux系统中,利用图形化界面安装虚拟机.首先启动 virt-manager,当然没有安装 virt-manager需要先安装好. 1 $ apt-get install virt-manager ...
- [OpenCV实战]24 使用OpenCV进行曝光融合
目录 1 什么是曝光融合 2 曝光融合的原理 3 代码与结果 4 参考 本教程中,我们将了解使用OpenCV的Exposure Fusion(曝光融合). 1 什么是曝光融合 曝光融合是一种将使用不同 ...
- 记一个难以发现的 UB
观察以下代码: vector<int> X, Y, A, val; inline int ls(int p) { return p << 1; } inline int rs( ...
- Web3区块链DAS域名注册教程 tron trx链波卡钱包地址解析 用户名转账 ENS
而在去中心化系统中,大部分人充值.转账时,使用的都是区块链原生的长地址,比如: ETH 的地址: 0x9euo8sHip*******dHld90 CKB 的地址: ckHUEI829D******* ...
- CentOS7升级Linux内核
CentOS7升级Linux内核 什么是Linux内核 虽然时候使用 Linux 来表示整个操作系统,严格地说,Linux 只是个内核,而发行版的操作系统是一个完整功能的系统,它建立在内核之上,具有各 ...
- 使用插件式开发称重仪表驱动,RS232串口对接各类地磅秤数据实现ERP管理
在ERP系统中,采集一线的生产数据是重要工作之一,而称重计量是企业的核心资产数据,人工计重费时费力,还容易出错,重量数据是否正确,直接影响企业的采购或销售额.基于此,由系统对接电子秤实现自动抓取数据是 ...
- (四)elasticsearch 源码之索引流程分析
1.概览 前面我们讨论了es是如何启动,本文研究下es是如何索引文档的. 下面是启动流程图,我们按照流程图的顺序依次描述. 其中主要类的关系如下: 2. 索引流程 我们用postman ...