这个题,题面是【】,出题人也是个【】

真就只放前向星过,把 vector 和离线建图都卡了。。。

题意:

一棵树,一条边有 \(p_i\) 的概率连接两个节点,一个点有 \(P_i\) 的概率亮着,问所有节点亮着的期望。

首先根据期望的线性性,所有节点亮着的期望明显可以拆成每个节点亮着的期望之和。然后仔细想想,\(E(X)=1 * p +0 * (1-p)=p\),所以只需要求亮着的概率即可。

怎么算呢?

考虑 dp,设 \(dp_1[u]\) 为 \(u\) 为根的子树中,\(u\) 亮着的概率。

直接算很困难,考虑算 \(u\) 不亮着的概率,不难发现是 \((1-P_u)\prod_{\texttt {v is u son}}(1-dp1[v] \times p_{(u,v)})\),用 \(1\) 减去即可得到 \(dp_1[u]\)。

接下来考虑换根。要求的东西还是一样的,只是需要维护父节点的 \(dp\) 值。

设 \(dp_2[u]\) 为考虑整棵树时 \(u\) 亮着的概率,此处为了方便设 \(f[u]\) 为去掉 \(u\) 为根的子树时,其父亲节点亮着的概率。

对于 \(u\) 的一个儿子 \(v\),我们很容易能够发现有 \(f[v]=(1-p_{(u,f[v])}\prod_{\texttt {x is u son }\And x \ne v } 1-dp1[x] \times e_{(u,x)})\)。

大多数同学都是直接用 \(dp2[u]\) 和 \(dp1[v]\) 直接进行转移,来得到其值,但其实可以对儿子维护一个前缀积和后缀积,这样就不会出现除法的问题了。

#include<cstdio>
#include<vector>
#include<cctype>
typedef double db;
const int M=5e5+5;
int n,m,cnt,h[M],f[M];db ans,p[M],dp1[M],dp2[M];
db v[M],lp[M],rp[M];
struct Edge{
int v,nx;db p;
}e[M<<1];
inline void Add(const int&u,const int&v,const db&p){
e[++cnt]=(Edge){v,h[u],p};h[u]=cnt;
e[++cnt]=(Edge){u,h[v],p};h[v]=cnt;
}
inline int read(){
int n(0);char s;
while(!isdigit(s=getchar()));
while(n=n*10+(s&15),isdigit(s=getchar()));
return n;
}
void DFS1(int u){
dp1[u]=1-p[u];
for(int E=h[u];E;E=e[E].nx)if(e[E].v^f[u])f[e[E].v]=u,DFS1(e[E].v),dp1[u]*=(1-dp1[e[E].v]*e[E].p);dp1[u]=1-dp1[u];
}
void DFS2(int u){
int e,i,len(0);db p=(dp2[u]*=1-::p[u]);
for(e=h[u];e;e=::e[e].nx)if(::e[e].v^f[u])v[++len]=1-dp1[::e[e].v]*::e[e].p;
for(i=1;i<=len;++i)lp[i]=(i==1?1:lp[i-1])*v[i];
for(i=len;i>=1;--i)rp[i]=(i==len?1:rp[i+1])*v[i];
for(e=h[u],i=1;e;e=::e[e].nx){
if(::e[e].v==f[u])continue;Edge&E=::e[e];dp2[E.v]*=p;dp2[u]*=1-dp1[E.v]*E.p;
if(i^1)dp2[E.v]*=lp[i-1];if(i^len)dp2[E.v]*=rp[i+1];
dp2[E.v]=1-(1-dp2[E.v])*E.p;++i;
}
for(e=h[u];e;e=::e[e].nx)if(::e[e].v^f[u])DFS2(::e[e].v);dp2[u]=1-dp2[u];
}
signed main(){
int i,u,v,p;n=read();
for(i=1;i<n;++i)u=read(),v=read(),p=read(),Add(u,v,.01*p);
for(i=1;i<=n;++i)::p[i]=.01*read(),dp2[i]=1;DFS1(1);DFS2(1);
for(i=1;i<=n;++i)ans+=dp2[i];printf("%.6f",ans);
}

LGP4284题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. java基础-抽象类与接口(转)

    抽象类与接口是java语言中对抽象概念进行定义的两种机制,正是由于他们的存在才赋予java强大的面向对象的能力.他们两者之间对抽象概念的支持有很大的相似,甚至可以互换,但是也有区别. 一.抽象类    ...

  2. 使用 Element UI Select 组件的 value-key 属性,让绑定值可以为一个对象

    EsunR 2019-11-07 12:14:42  12264  收藏 6 分类专栏: Vue 文章标签: element-ui 版权 当我们使用 Elemet UI 的选择组件进行多选时,Sele ...

  3. 列出ubuntu软件管理工具apt的一些用法(自由总结)

    安装软件包 [root@CentOS7 ~]#apt install tree 删除软件包 [root@CentOS7 ~]# apt remove tree 列出仓库软件包 [root@CentOS ...

  4. vc++调试总结

    .在debug->windows下,有以下调试窗口 1)Breakpoints管理断点信息 可以新建条件断点,函数断点,以及特定地址改变断点(用于检测数据发生改变时机点) 在断点处,可以进入汇编 ...

  5. Solution -「多校联训」Sample

    \(\mathcal{Description}\)   Link   (稍作简化:)对于变量 \(p_{1..n}\),满足 \(p_i\in[0,1],~\sum p_i=1\) 时,求 \(\ma ...

  6. Graph Based SLAM 基本原理

    作者 | Alex 01 引言 SLAM 基本框架大致分为两大类:基于概率的方法如 EKF, UKF, particle filters 和基于图的方法 .基于图的方法本质上是种优化方法,一个以最小化 ...

  7. Netty源码解析一——线程池模型之线程池NioEventLoopGroup

    本文基础是需要有Netty的使用经验,如果没有编码经验,可以参考官网给的例子:https://netty.io/wiki/user-guide-for-4.x.html.另外本文也是针对的是Netty ...

  8. ServiceStack.Redis的源码分析(连接与连接池)

    前几天在生产环境上redis创建连接方面的故障,分析过程中对ServiceStack.Redis的连接创建和连接池机制有了进一步了解.问题分析结束后,通过此文系统的将学习到的知识点整理出来. 从连接池 ...

  9. linux系统开机流程

    基本步骤:上电->bios->MBR引导->GRUB菜单->加载内核->运行init进程初始化->启动/etc/rc.d*脚本与相关配置文件->执行rc.lo ...

  10. JDBC(解析properties)

    练习1:解析配置文件jdbc.properties jdbc.driver=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://192.168.168.168:33 ...