1. 最大流问题定义

1.1 流网络(Flow network)

Def. A flow network is a tuple \(G = (V, E, s, t, c)\):

  • Digraph \((V, E)\) with source \(s ∈ V\) and sink \(t ∈ V\).
  • Capacity \(c(e) ≥ 0\) for each \(e ∈ E\).

定义. 一个流网络可以定义为一个元组\(G = (V, E, s, t, c)\), 满足如下条件:

  • 有向图\((V, E)\)中含义一个源点\(s ∈ V\)以及一个汇点\(t ∈ V\).
  • 每条边都有相应的容量\(c(e) ≥ 0\).

1.2 最大流问题(Maximum-flow problem)

Def. An flow \(f\) is a function that satisfies:

  • For each \(e ∈ E\) : \(0\le f(e)\le c(e)\) [capacity]
  • For each \(v ∈ V – \set{s, t}\) : \(\displaystyle \sum_\text{e in to v}f(e)=\sum_\text{e out of v}f(e)\) [flow conservation]

定义. 一个流\(f\)是指一个满足如下条件的函数:

  • 对于边\(e ∈ E\): \(0\le f(e)\le c(e)\). [容量]
  • 对于顶点\(v ∈ V – \set{s, t}\): \(\displaystyle \sum_\text{e in to v}f(e)=\sum_\text{e out of v}f(e)\). [流量守恒]

Def. The value of a flow \(f\) is: \(val(f)=\displaystyle \sum_\text{e out of s}f(e)-\sum_\text{e in to s}f(e)\).

定义. 一个流\(f\)的值可以定义为: \(val(f)=\displaystyle \sum_\text{e out of s}f(e)-\sum_\text{e in to s}f(e)\).

Max-flow problem. Find a flow of maximum value.

最大流问题. 找到一个流,它的值最大.

2. 最大流问题算法

三种解决最大流问题算法, B站upShusenWang的视频.

2.1 福特-富尔克森算法(Ford–Fulkerson algorithm)

13-2: Ford-Fulkerson Algorithm 寻找网络最大流

2.2 埃德蒙兹-卡普算法(Edmonds-Karp Algorithm)

13-3: Edmonds-Karp Algorithm 寻找网络最大流

2.3 迪尼茨算法(Dinic's algorithm)

13-4: Dinic's Algorithm 寻找网络最大流

3. 扩展

3.1 瓶颈边(Bottleneck edge)

定义. 流网络中的一条边被称为瓶颈边是指其容量的增加将导致最大流的增加。

问题. 给出一个识别流网络中瓶颈边的高效算法

算法如下:

  • 用Ford-Fulkerson算法, 得到最终的剩余图
  • 计算两个集合: 剩余图中所有从源点\(s\)可达的节点定义为集合\(A\), 剩余图中所有可以到达汇点\(t\)的节点定义为集合\(B\).
  • 任何一个连接集合\(A\)中节点到集合\(B\)中节点的边\(e\), 都是瓶颈边.

*第二步中, 求集合\(A\)可以通过在剩余图中从源点\(s\)深搜求得, 集合\(B\)可以通过在剩余图的反向图中从汇点\(t\)深搜求得. 此步骤时间复杂度为\(O(m)\), 其中m为剩余图中边的数量.

正确性: 增加\(e\)的容量, 一定会使剩余图产生一条新的增广路径, 从而使最大流增大.

最大流基础(Maximum Flow Basis)的更多相关文章

  1. 前端必须了解的布局常识:普通流(normal flow)

    目录 一.概述 二.块级元素和内联元素 常见的块级元素 BFC 常见的行内元素 IFC 三.哪些情况会脱离普通流 浮动 绝对定位 固定定位 display:none 四.总结 五.参考资料 一.概述 ...

  2. [Algorithm] Maximum Flow

    Ref MIT: lecture-13-incremental-improvement-max-flow-min-cut/ Ford Fulkerson algorithm for finding m ...

  3. Java 中级IO流基础及主要API编程

    1. IO流基础知识,流 是字节从源到目的地的运行的轨迹,次序是有意义的, 字节会按照次序进行传递, 比如Hello World 在下图中的传递的轨迹.该图形象的解释了IO中流的概念.流中全是字节.2 ...

  4. Java IO 文件与流基础

    Java IO 文件与流基础 @author ixenos 摘要:创建文件.文件过滤.流分类.流结构.常见流.文件流.字节数组流(缓冲区) 如何创建一个文件 #当我们调用File类的构造器时,仅仅是在 ...

  5. [转载]Maximum Flow: Augmenting Path Algorithms Comparison

    https://www.topcoder.com/community/data-science/data-science-tutorials/maximum-flow-augmenting-path- ...

  6. Spring Cloud Alibaba | Sentinel: 服务限流基础篇

    目录 Spring Cloud Alibaba | Sentinel: 服务限流基础篇 1. 简介 2. 定义资源 2.1 主流框架的默认适配 2.2 抛出异常的方式定义资源 2.3 返回布尔值方式定 ...

  7. Java 8 新特性之 Stream 流基础体验

    Java 8 新特性之 Stream 流基础体验 package com.company; import java.util.ArrayList; import java.util.List; imp ...

  8. 网络流--最大流--HDU 3549 Flow Problem

    题目链接 Problem Description Network flow is a well-known difficult problem for ACMers. Given a graph, y ...

  9. SPOJ 4110 Fast Maximum Flow (最大流模板)

    题目大意: 无向图,求最大流. 算法讨论: Dinic可过.终于我的常数还是太大.以后要注意下了. #include <cstdio> #include <cstring> # ...

  10. BZOJ-1433 假期的宿舍 最大流+基础建图

    网络流练习ing.. 1433: [ZJOI2009]假期的宿舍 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 1748 Solved: 765 [S ...

随机推荐

  1. 安卓蓝牙协议栈中的RFCOMM状态机分析

    1.1 数据结构 1.1.1  tRFC_MCB tRFC_MCB(type of rfcomm multiplexor control block的简写)代表了一个多路复用器.代表了RFCOMM规范 ...

  2. Selenium+Python上传文件方法大全

    转自:https://www.jianshu.com/p/fba37cc5d5e2

  3. Windows 10 ~ Docker 安装

    Windows安装Docker 不推荐在Windows系统安装Docker,会有一些奇怪的坑不容易解决,建议windows环境安装虚拟机,通过虚拟机中的Linux系统安装Docker 官方安装文档 9 ...

  4. Navicat12安装包+破解方式(详细教程)

    链接:https://pan.baidu.com/s/1vXQzT5nWD73lS5ZMGYYfeA 提取码:phhh 注意!!!  只有Navicat12版本才支持破解,其他版本无法破解. 1. 下 ...

  5. Windows系统更改/迁移用户目录

    系统盘为C盘,C盘空间不足,C盘太满了,C盘清理时查看发现C:\Users目录占用几十个GB,以下方法可将Users目录大部分空间转移. 1. 准备工作 更改/迁移用户目录之前先自行备份当前用户的资料 ...

  6. ubuntu20安装open4.4带扩展库

    0查看当前版本安装 opencv_version 已经装了3.49 再装个4.4共存 1安装依赖库 sudo add-apt-repository "deb http://security. ...

  7. 第15章 授权:保护您的应用程序(ASP.NET Core in Action, 2nd Edition)

    本章包括 使用授权控制谁可以使用你的应用 对策略使用基于声明的授权 创建自定义策略以处理复杂的需求 根据所访问的资源授权请求 隐藏用户未经授权访问的Razor模板中的元素 在第14章中,我向您展示了如 ...

  8. C# POST multipart/form-data 方式提交数据

    一.提交方法 /// <summary> /// MultipartFormData Post方式提交 /// </summary> /// <param name=&q ...

  9. PVE设置硬盘休眠并解决经常唤醒问题

    查询硬盘编号: ls -l /dev/disk/by-id/ 查询硬盘状态: smartctl -i -n standby /dev/sda |grep "mode"|awk '{ ...

  10. .netCore Nuget包引用记录

    1.画图  System.Drawing.Common 2.