NC24083 [USACO 2017 Dec P]Greedy Gift Takers
NC24083 [USACO 2017 Dec P]Greedy Gift Takers
题目
题目描述
Farmer John's nemesis, Farmer Nhoj, has N cows (\(1≤N≤10^5\)), conveniently numbered 1…N. They have unexpectedly turned up at Farmer John's farm, so the unfailingly polite Farmer John is attempting to give them gifts.
To this end, Farmer John has brought out his infinite supply of gifts, and Nhoj's cows have queued up in front of him, with cow 1 at the head of the queue and cow N at the tail. Farmer John was expecting that at every timestep, the cow at the head of the queue would take a gift from Farmer John and go to the tail of the queue. However, he has just realized that Nhoj's cows are not that polite! After receiving her gift, each cow may not go to the tail of the queue, but rather may cut some number of cows at the tail, and insert herself in front of them. Specifically, cow ii will always cut exactly cic_ici cows (\(0≤c_i≤N−1\)).
Farmer John knows that some cows might receive multiple gifts; as he has an infinite supply, this does not worry him. But he is worried that some cows might become unhappy if they do not get any gifts.
Help Farmer John find the number of cows who never receive any gifts, no matter how many gifts are handed out.
输入描述
The first line contains a single integer, N.
The second line contains N space-separated integers \(c_1,c_2,…,c_N\) .
输出描述
Please output the number of cows who cannot receive any gifts.
示例1
输入
3
1 2 0
输出
1
题解
思路
知识点:二分。
第一个难点是要注意到,可行性函数是关于队伍的第几头牛的,因为发现如果某头牛拿不到礼物那他之后的牛一定拿不到,而拿的到的牛之前的牛一定拿得到,因此答案位置处于函数零点,且函数单调。
第二个难点是如何写可行性检验的函数。我们先统计 \(mid\) 牛之前的牛的 \(cnt[i]\) ,表示牛插到第 \(i(1\leq i < mid)\) 个位置的数量,而且 \(cnt[i]\) 只会随 \(mid\) 靠前减少,而不会更改或者变多,因为牛要么排到后面要么还在 \(1\leq i <mid\) 。对于第 \(i\) 个位置,若 \(\sum_{i=1}^i cnt[i] \geq i\) ,说明 \(mid\) 牛之前肯定会存在 \(\geq i\) 的牛插队到 \(\leq i\) 的位置,由于,所以队伍始终至少在 \(i\) 之前循环,所以不可能到达 \(mid\) 牛;而 \(\sum_{i=1}^i cnt[i] < i\) 说明,在 \(mid\) 牛之前会存在 \(< i\) 的牛插队到 \(\leq i\) 的位置,即 \(\leq i\) 的队伍一定长度缩短,而且这些牛之后会到同样位置,因此 \(cnt[i]\) 不增,即 \(\leq i\) 排队的牛会不增,表示 \(\leq i\) 的队伍必定不会循环,特别地如果 \(\sum_{i=1}^{mid-1} cnt[i] < mid-1\) ,即表示 \(\leq mid-1\) 的队伍必定不会循环,即可行。
时间复杂度 \(O(n \log n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
int n;
int c[100007], cnt[100007];
bool check(int mid) {///判断是否拿得到
memset(cnt, 0, sizeof(cnt));
int sum = 0;
for (int i = 1;i < mid;i++) cnt[c[i]]++;
for (int i = 1;i < mid;i++) {
sum += cnt[i];
if (sum >= i) return 0;
}
return 1;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n;
for (int i = 1;i <= n;i++) cin >> c[i], c[i] = n - c[i];
int l = 1, r = n;
while (l <= r) {
int mid = l + r >> 1;
if (check(mid)) l = mid + 1;
else r = mid - 1;
}
cout << n - r << '\n';///n减最后一个拿得到的位置(第一个拿不到的位置减一) = 拿不到的总数
return 0;
}
NC24083 [USACO 2017 Dec P]Greedy Gift Takers的更多相关文章
- [USACO 2017 Dec Gold] Tutorial
Link: USACO 2017 Dec Gold 传送门 A: 为了保证复杂度明显是从终结点往回退 结果一开始全在想优化建边$dfs$……其实可以不用建边直接$multiset$找可行边跑$bfs$ ...
- USACO Section 1.1-2 Greedy Gift Givers
Greedy Gift Givers 贪婪的送礼者 对于一群(NP个)要互送礼物的朋友,GY要确定每个人送出的钱比收到的多多少. 在这一个问题中,每个人都准备了一些钱来送礼物,而这些钱将会被平均分给那 ...
- usaco training <1.2 Greedy Gift Givers>
题面 Task 'gift1': Greedy Gift Givers A group of NP (2 ≤ NP ≤ 10) uniquely named friends has decided t ...
- [BZOJ5139][Usaco2017 Dec]Greedy Gift Takers 权值线段树
Description Farmer John's nemesis, Farmer Nhoj, has NN cows (1≤N≤10^5), conveniently numbered 1…N. T ...
- [USACO 2017DEC] Greedy Gift Takers
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=5139 [算法] 二分答案 时间复杂度 : O(NlogN^2) [代码] #incl ...
- [USACO] 2017 DEC Bronze&Silver
link:http://www.usaco.org/index.php?page=dec17results Problem A(Bronze) 这是一道非常简单的判断重叠面积的题目,但第一次提交仍会出 ...
- [USACO17DEC]Greedy Gift Takers
题目描述 Farmer John's nemesis, Farmer Nhoj, has NN cows (1 \leq N \leq 10^51≤N≤105 ), conveniently numb ...
- USACO Section 1.1 Greedy Gift Givers 解题报告
题目 问题描述 有若干个朋友,朋友之间可以选择互相赠送一些有价值的礼物.一个人可以选择将一部分钱分给若干个朋友,例如某人送给其他两个人钱,总共赠送3元,两个人平均分,原本应该是每人1.5元,但是只能取 ...
- P4090 [USACO17DEC]Greedy Gift Takers
题目链接 题意分析 首先 如果当前序列中一头奶牛拿不到礼物的话 那么他后面的奶牛也拿不到礼物 所以我们可以二分 由于可以操作无限次 所以我们对于当前\([1,mid)\)的奶牛按照\(c\)值排序之后 ...
随机推荐
- C# iText 7 切分PDF,处理PDF页面大小
一.itext 我要使用itext做一个pdf的页面大小一致性处理,然后再根据数据切分出需要的pdf. iText的官网有关于它的介绍,https://itextpdf.com/ 然后在官网可以查找a ...
- springboot简单发送邮件介绍
1.新建一个springboot项目 2.所需要的的jar包: <dependency> <groupId>org.springframework.boot</group ...
- 1.5 Linux中大量使用脚本语言,而不是C语言!
说到在 Linux 下的编程,很多人会想到用C语言,Linux 的内核.shell.基础命令程序,也的确是用C语言编写的,这首先证明了一点,C语言很强很通用. 到目前为止,C语言依然垄断着计算机工业中 ...
- Linux内存、Swap、Cache、Buffer详细解析
关注「开源Linux」,选择"设为星标" 回复「学习」,有我为您特别筛选的学习资料~ 1. 通过free命令看Linux内存 total:总内存大小. used:已经使用的内存大小 ...
- IIS项目部署和发布
VS2019如何把项目部署和发布 这里演示:通过IIS文件publish的方式部署到Windows本地服务器上 第一步(安装IIS) 1.在自己电脑上搜索Windows功能里的[启用或关闭Window ...
- hibernate + hsqldb单元测试
1.测试环境连接hsqldb,使用hibernate的自动建表功能. 1 <bean id="sessionFactory" 2 class="org.spring ...
- 3.Docker常用命令
帮助启动类命令 启动docker: systemctl start docker 停止docker: systemctl stop docker 重启docker: systemctl restart ...
- 6┃音视频直播系统之 WebRTC 核心驱动SDP规范协商
一.什么是SDP SDP(Session Description Protocal)其实就是当数据过来时候,告诉数据自己这里支持的解码方式.传输协议等等,这样数据才能根据正确的方式进行解码使用 SDP ...
- 推荐一款新框架PyScript:在 HTML 嵌入 Python 代码!
一.介绍 网页浏览器是目前世界上最普遍,最可携的计算机环境.几乎所有人都可以在计算机或是手机上使用网页浏览器,以没有基础设施障碍的方式访问程序. 在 PyCon US 2022 上,知名 Python ...
- ElasticSearch7.3学习(二十七)----聚合概念(bucket和metric)及其示例
一.两个核心概念:bucket和metric 1.1 bucket 有如下数据 city name 北京 张三 北京 李四 天津 王五 天津 赵六 天津 王麻子 划分出来两个bucket,一个是北 ...