BZOJ2753 SCOI2012 滑雪与时间胶囊 【最小生成树】*
BZOJ2753 SCOI2012 滑雪与时间胶囊
Description
a180285非常喜欢滑雪。他来到一座雪山,这里分布着M条供滑行的轨道和N个轨道之间的交点(同时也是景点),而且每个景点都有一编号i(1<=i<=N)和一高度Hi。a180285能从景点i 滑到景点j 当且仅当存在一条i 和j 之间的边,且i 的高度不小于j。
与其他滑雪爱好者不同,a180285喜欢用最短的滑行路径去访问尽量多的景点。如果仅仅访问一条路径上的景点,他会觉得数量太少。于是a180285拿出了他随身携带的时间胶囊。这是一种很神奇的药物,吃下之后可以立即回到上个经过的景点(不用移动也不被认为是a180285 滑行的距离)。请注意,这种神奇的药物是可以连续食用的,即能够回到较长时间之前到过的景点(比如上上个经过的景点和上上上个经过的景点)。
现在,a180285站在1号景点望着山下的目标,心潮澎湃。他十分想知道在不考虑时间胶囊消耗的情况下,以最短滑行距离滑到尽量多的景点的方案(即满足经过景点数最大的前提下使得滑行总距离最小)。你能帮他求出最短距离和景点数吗?
Input
输入的第一行是两个整数N,M。
接下来1行有N个整数Hi,分别表示每个景点的高度。
接下来M行,表示各个景点之间轨道分布的情况。每行3个整数,Ui,Vi,Ki。表示
编号为Ui的景点和编号为Vi的景点之间有一条长度为Ki的轨道。
Output
输出一行,表示a180285最多能到达多少个景点,以及此时最短的滑行距离总和。
Sample Input
3 3
3 2 1
1 2 1
2 3 1
1 3 10
Sample Output
3 2
HINT
【数据范围】
对于30%的数据,保证 1<=N<=2000
对于100%的数据,保证 1<=N<=100000
对于所有的数据,保证 1<=M<=1000000,1<=Hi<=1000000000,1<=Ki<=1000000000。
一开始做题走入误区了,以为最优答案就是最短路径树,结果发现是错的
首先我们可以观察一下,发现时间胶囊的作用就是回到某个已经经过的节点,言外之意就是让你求一个包含极大点集且总边权最小的树形结构
但是这道题还有高度的限制,我们在生成树的时候并不能把所有的边直接按照边权排序,因为这样的话可能会出现一些不合法的边
那我们再观察一下发现树上的任意一条有向边的到达点的高度都是小于出发点的,所以就可以以到达点高度为第一关键字,边权为第二关键字来排序,这样就相当于一层一层地向树中加边
剩下的非常简单,就是一个dfs搜出可以到达的点和一个并查集维护kurskal
#include<bits/stdc++.h>
using namespace std;
#define N 1000010
struct Edge{int u,v,w,next;}E[N<<1];
int n,m,tot=0,head[N],h[N];
int fa[N],ans1=0;long long ans2=0;
bool vis[N]={0};
void add(int u,int v,int w){
E[++tot]=(Edge){u,v,w,head[u]};
head[u]=tot;
}
int getfa(int x){
if(fa[x]==x)return x;
return fa[x]=getfa(fa[x]);
}
bool cmp(Edge a,Edge b){
if(h[a.v]==h[b.v])return a.w<b.w;
return h[a.v]>h[b.v];
}
void dfs(int u){
vis[u]=1;ans1++;
for(int i=head[u];i;i=E[i].next){
int v=E[i].v;
if(vis[v])continue;
dfs(v);
}
}
void Kruskal(){
sort(E+1,E+tot+1,cmp);
for(int i=1;i<=tot;i++){
int u=E[i].u,v=E[i].v;
if((!vis[u])||(!vis[v]))continue;
int fau=getfa(u),fav=getfa(v);
if(fau==fav)continue;
ans2+=E[i].w;
fa[fau]=fav;
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d",&h[i]),fa[i]=i;
for(int i=1;i<=m;i++){
int u,v,w;scanf("%d%d%d",&u,&v,&w);
if(h[u]>=h[v])add(u,v,w);
if(h[u]<=h[v])add(v,u,w);
}
dfs(1);
Kruskal();
printf("%d %lld",ans1,ans2);
return 0;
}
BZOJ2753 SCOI2012 滑雪与时间胶囊 【最小生成树】*的更多相关文章
- bzoj2753[SCOI2012]滑雪与时间胶囊 最小生成树
Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 2843 Solved: 993[Submit][Status][Discuss] Descripti ...
- Bzoj2753 [SCOI2012]滑雪与时间胶囊
2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 2282 Solved: 796 Descriptio ...
- BZOJ 2753 [SCOI2012] 滑雪和时间胶囊 最小生成树
题目链接: 题目 2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec Memory Limit: 128 MB 问题描述 a180285非常喜欢滑雪.他来到一座雪山, ...
- bzoj 2753: [SCOI2012]滑雪与时间胶囊 -- 最小生成树
2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec Memory Limit: 128 MB Description a180285非常喜欢滑雪.他来到一座雪山,这 ...
- 2019.01.17 bzoj2753: [SCOI2012]滑雪与时间胶囊(最小生成树)
传送门 最小生成树菜题. 题意:给出一些有向边,问有向的最小生成树. 思路:先dfsdfsdfs一把所有有用的边都存起来,然后按终点点权为第一关键字,边权为第二关键字给边排序保证最小生成树的合法性,排 ...
- BZOJ2753 SCOI2012滑雪与时间胶囊(最小生成树)
首先显然可以把所有能到的点拎出来建个新图,这样第一问也就做好了. 剩下的部分似乎是一个裸的最小树形图.但显然这个东西是没什么学的必要的并且不太能跑过去. 考虑建出来的图有什么性质.可以发现如果没有高度 ...
- BZOJ2753 [SCOI2012]滑雪与时间胶囊 【kruskal】
题目链接 BZOJ2753 题解 完了我连\(kruskal\)裸题都做不出来了.. 题目是求最小树形图,即有向图最小生成树 我们不能直接上\(kruskal\),而要保证先加入前面的点, 所以我们排 ...
- [BZOJ2753][SCOI2012]滑雪与时间胶囊(特殊的有向树形图)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2753 分析: 第一问:直接BFS扩展知道无法扩展 第二问: 看似就是最小树形图啊= = ...
- 2753: [SCOI2012]滑雪与时间胶囊
2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 2633 Solved: 910 Descriptio ...
随机推荐
- python 匹配中文和英文
在处理文本时经常会匹配中文名或者英文word,python中可以在utf-8编码下方便的进行处理. 中文unicode编码范围[\u4e00-\u9fa5] 英文字符编码范围[a-zA-Z] 此时匹配 ...
- 在.Net中进行SQL Server数据库备份与还原操作实用类
#region 类说明 //----------------------------------------------------------------------------- // // 项目 ...
- ThinkPHP开发笔记-视图
1.如果要在模板中输出变量,必须在在控制器中把变量传递给模板,系统提供了assign方法对模板变量赋值,无论何种变量类型都统一使用assign赋值,而且assign方法必须在display和show方 ...
- 从源码角度分析 Kotlin by lazy 的实现
by lazy 的作用 延迟属性(lazy properties) 是 Kotlin 标准库中的标准委托之一,可以通过 by lazy 来实现. 其中,lazy() 是一个函数,可以接受一个 Lamb ...
- 记录一下我的mac的环境变量的配置参数
#配置jdk环境export JAVA_7_HOME=/Library/java/JavaVirtualMachines/jdk1.7.0_79.jdk/Contents/Homeexport JAV ...
- poj1679次小生成树入门题
次小生成树求法:例如求最小生成树用到了 1.2.4这三条边,总共5条边,那循环3次的时候,每次分别不用1.2.4求得最小生成树的MST,最小的MST即为次小生成树 如下代码maxx即求最小生成树时求得 ...
- Kafka、RabbitMQ、RocketMQ、ActiveMQ 17 个方面综合对比
本文将从,Kafka.RabbitMQ.ZeroMQ.RocketMQ.ActiveMQ 17 个方面综合对比作为消息队列使用时的差异.(欢迎加入Java程序员群:630441304,一起学习交流会) ...
- Java集合详解3:Iterator,fail-fast机制与比较器
Java集合详解3:Iterator,fail-fast机制与比较器 今天我们来探索一下LIterator,fail-fast机制与比较器的源码. 具体代码在我的GitHub中可以找到 https:/ ...
- 2016ACM/ICPC亚洲区大连站现场赛题解报告(转)
http://blog.csdn.net/queuelovestack/article/details/53055418 下午重现了一下大连赛区的比赛,感觉有点神奇,重现时居然改了现场赛的数据范围,原 ...
- linux命令生成公私钥
生成原始rsa私钥文件: openssl genrsa -out rsa_private_key.pem 1024 将原始的rsa私钥转换未pkcs8格式(即生成私钥文件): openssl pkcs ...