BZOJ4787/UOJ290 【ZJOI2017】仙人掌
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
题目链接:UOJ290
正解:$DP$+仙人掌
解题报告:
考虑环上的边,不可能在连边中再被覆盖,所以只需要考虑树边就好了。
把环拆掉,只剩下若干棵树,就是一个森林,最后把每棵树的答案用乘法原理合并起来就好了。
对于每个节点$u$,我们考虑他的子树的连边方案数如何统计。
如果我们强制每个结点的子树必须向外连一条边(显然最多一条),往上统计的话,
那么假设$u$的子树内没有向外连边,那么就是把儿子节点的$ans$乘起来。
如果向外连边了,就需要考虑互相连边的合法情况有多少种了。我们发现这个方案数只和儿子节点个数有关,可以很容易的用递推式来表示:
$g[n]=g[n-1]+g[n-2]*(n-1)$
预处理出$g$数组,每次对于每个节点先把儿子节点的$ans$全乘进来,接下来需要分类讨论节点$u$是不是一棵树的根。
如果是根的话,则不能向外连边,那么再乘上儿子节点个数的$g$就好了(相当于是组合了节点个数个点的互相连边方式);
否则,可以向外连边,那么把节点$u$本身也可以算进来,就是再乘上儿子节点个数$+1$的$g$。
//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
#include <bitset>
using namespace std;
typedef long long LL;
typedef long double LB;
typedef complex<double> C;
const double pi = acos(-1);
const int MAXN = 500011;
const int MAXM = 1000011;
const int mod = 998244353;
int n,m,ecnt,first[MAXN],to[MAXM],next[MAXM],father[MAXN],lu[MAXN],dfn[MAXN],deep[MAXN];
LL g[MAXN],f[MAXN],ans;
struct node{ int id,x; }a[MAXN];
inline bool cmp(node q,node qq){ return q.x<qq.x; }
inline void link(int x,int y){ next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; }
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void dfs(int x,int fa){
dfn[x]=++ecnt;
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==fa) continue;
if(!dfn[v]) father[v]=x,deep[v]=deep[x]+1,dfs(v,x);
}
} inline void dp(int x,bool rt){
lu[x]=-1; f[x]=1; int tot=0;//the number of son
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==father[x]) continue;
if(lu[v]!=1) continue;
tot++;
dp(v,0); f[x]*=f[v]; f[x]%=mod;
}
if(tot==0) return ;
if(!rt) f[x]*=g[tot+1],f[x]%=mod;
else f[x]*=g[tot],f[x]%=mod;
} inline void work(){
g[0]=g[1]=1; for(int i=2;i<=500001;i++) g[i]=g[i-1]+g[i-2]*(i-1),g[i]%=mod;
int T=getint(); int x,y; bool ck;
while(T--) {
n=getint(); m=getint(); ecnt=1;
for(int i=1;i<=n;i++) first[i]=father[i]=dfn[i]=deep[i]=lu[i]=0;
for(int i=1;i<=m;i++) {
x=getint(); y=getint();
link(x,y); link(y,x);
}
ecnt=0; deep[1]=1; dfs(1,0); ck=true;
for(int i=1;i<=m;i++) {//统计lu数组(到根的路径条数),判断是否为仙人掌
x=to[i<<1]; y=to[i<<1|1]; if(dfn[x]<dfn[y]) swap(x,y);
while(x!=y) {
lu[x]++;
if(lu[x]>2) { ck=false; break; }
x=father[x];
}
}
if(!ck) { printf("0\n"); continue; }
for(int i=1;i<=n;i++) a[i].id=i,a[i].x=deep[i];
sort(a+1,a+n+1,cmp);
ans=1;
for(int i=1;i<=n;i++) {
x=a[i].id;
if(lu[x]!=-1) {
dp(x,1);
ans*=f[x]; ans%=mod;
}
}
printf("%lld\n",ans);
}
} int main()
{
work();
return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
BZOJ4787/UOJ290 【ZJOI2017】仙人掌的更多相关文章
- 【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)
[BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙 ...
- [BZOJ4784][ZJOI2017]仙人掌(树形DP)
4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 312 Solved: 181[Submit][Status] ...
- bzoj4784 [Zjoi2017]仙人掌
Description 如果一个无自环无重边无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌.所谓简单环即不经过重复的结点的环. 现在九条可怜手上有一张无自环无重边的无向连通图,但是她觉得 ...
- ●洛谷P3687 [ZJOI2017]仙人掌
题链: https://www.luogu.org/problemnew/show/P3687题解: 计数DP,树形DP. (首先对于这个图来说,如果初始就不是仙人掌,那么就直接输出0) 然后由于本来 ...
- 【做题】ZJOI2017仙人掌——组合计数
原文链接 https://www.cnblogs.com/cly-none/p/ZJOI2017cactus.html 给出一个\(n\)个点\(m\)条边的无向连通图,求有多少种加边方案,使得加完后 ...
- LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】
题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然 ...
- zjoi2017 仙人掌
题解: 好难的dp啊...看题解看了好久才看懂 http://blog.csdn.net/akak__ii/article/details/65935711 如果一开始的图就不是仙人掌,答案显然为0, ...
- 2019.02.07 bzoj4784: [Zjoi2017]仙人掌(仙人掌+树形dp)
传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi表示把iii为根的子树加边形成仙人掌的方案数. ...
- BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)
首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...
随机推荐
- lvs、haproxy、nginx 负载均衡的比较分析(转)
原文:http://blog.csdn.net/gzh0222/article/details/8540604 对软件实现负载均衡的几个软件,小D详细看了一下,从性能和稳定上还是LVS最牛,基本达到了 ...
- Cache与主存之间的全相联映射,直接映射和组相联映射的区别
2017-02-22 注:本文并非原创,来自百度文库,只是觉得写得较好,故分享之.若是某人的知识产权,望告知!谢谢 1.高速缓冲存储器的功能.结构与工作原理 高速缓冲存储器是存在于主存与CPU之间的一 ...
- 文本情感分类:分词 OR 不分词(3)
为什么要用深度学习模型?除了它更高精度等原因之外,还有一个重要原因,那就是它是目前唯一的能够实现“端到端”的模型.所谓“端到端”,就是能够直接将原始数据和标签输入,然后让模型自己完成一切过程——包括特 ...
- go-008-循环语句
一.循环语句[只有for] 1.基础结构: Go语言的For循环有3中形式,只有其中的一种使用分号. 和 C 语言的 for 一样: for init; condition; post { } 和 C ...
- Jmeter(九)压力测试
一般我们在做压力测试的时候,分单场景和混合场景,单场景也就是咱们压测单个接口的时候,多场景也就是有业务流程的情况下,比如说一个购物流程,那么这样的场景就是混合场景,就是有多个接口一起来做操作.1.单场 ...
- POJ1265:Area(多边形面积公式+pick公式) 好题
题目:http://poj.org/problem?id=1265 题意 : 给你一个点阵,上边有很多点连成的多边形,让你求多边形内部的点和边界上的点以及多边形的面积,要注意他每次给出的点并不是点的横 ...
- visual studio NuGet
http://www.cnblogs.com/dudu/archive/2011/07/15/nuget.html 首先打开程序包管理器控制台:工具→Nuget程序包管理器→程序包管理器控制台 Ins ...
- docker——安装
Docker划分为CE和EE.CE即社区版(免费,支持后期三个月),EE即企业版,强调安全,付费使用. #安装依赖包 yum install -y yum-utils device-mapper-pe ...
- JavaScript之从头再来
引入文件 1. 引入外部文件 <script type="text/javascript" src="JS文件"></script> 2 ...
- link cut tree模板(LCT模板)
update:2017.09.26 #include <bits/stdc++.h> using namespace std; struct Link_Cut_Tree { + ; ], ...