BZOJ4787/UOJ290 【ZJOI2017】仙人掌
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
题目链接:UOJ290
正解:$DP$+仙人掌
解题报告:
考虑环上的边,不可能在连边中再被覆盖,所以只需要考虑树边就好了。
把环拆掉,只剩下若干棵树,就是一个森林,最后把每棵树的答案用乘法原理合并起来就好了。
对于每个节点$u$,我们考虑他的子树的连边方案数如何统计。
如果我们强制每个结点的子树必须向外连一条边(显然最多一条),往上统计的话,
那么假设$u$的子树内没有向外连边,那么就是把儿子节点的$ans$乘起来。
如果向外连边了,就需要考虑互相连边的合法情况有多少种了。我们发现这个方案数只和儿子节点个数有关,可以很容易的用递推式来表示:
$g[n]=g[n-1]+g[n-2]*(n-1)$
预处理出$g$数组,每次对于每个节点先把儿子节点的$ans$全乘进来,接下来需要分类讨论节点$u$是不是一棵树的根。
如果是根的话,则不能向外连边,那么再乘上儿子节点个数的$g$就好了(相当于是组合了节点个数个点的互相连边方式);
否则,可以向外连边,那么把节点$u$本身也可以算进来,就是再乘上儿子节点个数$+1$的$g$。
//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
#include <bitset>
using namespace std;
typedef long long LL;
typedef long double LB;
typedef complex<double> C;
const double pi = acos(-1);
const int MAXN = 500011;
const int MAXM = 1000011;
const int mod = 998244353;
int n,m,ecnt,first[MAXN],to[MAXM],next[MAXM],father[MAXN],lu[MAXN],dfn[MAXN],deep[MAXN];
LL g[MAXN],f[MAXN],ans;
struct node{ int id,x; }a[MAXN];
inline bool cmp(node q,node qq){ return q.x<qq.x; }
inline void link(int x,int y){ next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; }
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void dfs(int x,int fa){
dfn[x]=++ecnt;
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==fa) continue;
if(!dfn[v]) father[v]=x,deep[v]=deep[x]+1,dfs(v,x);
}
} inline void dp(int x,bool rt){
lu[x]=-1; f[x]=1; int tot=0;//the number of son
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==father[x]) continue;
if(lu[v]!=1) continue;
tot++;
dp(v,0); f[x]*=f[v]; f[x]%=mod;
}
if(tot==0) return ;
if(!rt) f[x]*=g[tot+1],f[x]%=mod;
else f[x]*=g[tot],f[x]%=mod;
} inline void work(){
g[0]=g[1]=1; for(int i=2;i<=500001;i++) g[i]=g[i-1]+g[i-2]*(i-1),g[i]%=mod;
int T=getint(); int x,y; bool ck;
while(T--) {
n=getint(); m=getint(); ecnt=1;
for(int i=1;i<=n;i++) first[i]=father[i]=dfn[i]=deep[i]=lu[i]=0;
for(int i=1;i<=m;i++) {
x=getint(); y=getint();
link(x,y); link(y,x);
}
ecnt=0; deep[1]=1; dfs(1,0); ck=true;
for(int i=1;i<=m;i++) {//统计lu数组(到根的路径条数),判断是否为仙人掌
x=to[i<<1]; y=to[i<<1|1]; if(dfn[x]<dfn[y]) swap(x,y);
while(x!=y) {
lu[x]++;
if(lu[x]>2) { ck=false; break; }
x=father[x];
}
}
if(!ck) { printf("0\n"); continue; }
for(int i=1;i<=n;i++) a[i].id=i,a[i].x=deep[i];
sort(a+1,a+n+1,cmp);
ans=1;
for(int i=1;i<=n;i++) {
x=a[i].id;
if(lu[x]!=-1) {
dp(x,1);
ans*=f[x]; ans%=mod;
}
}
printf("%lld\n",ans);
}
} int main()
{
work();
return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
BZOJ4787/UOJ290 【ZJOI2017】仙人掌的更多相关文章
- 【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)
[BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙 ...
- [BZOJ4784][ZJOI2017]仙人掌(树形DP)
4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 312 Solved: 181[Submit][Status] ...
- bzoj4784 [Zjoi2017]仙人掌
Description 如果一个无自环无重边无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌.所谓简单环即不经过重复的结点的环. 现在九条可怜手上有一张无自环无重边的无向连通图,但是她觉得 ...
- ●洛谷P3687 [ZJOI2017]仙人掌
题链: https://www.luogu.org/problemnew/show/P3687题解: 计数DP,树形DP. (首先对于这个图来说,如果初始就不是仙人掌,那么就直接输出0) 然后由于本来 ...
- 【做题】ZJOI2017仙人掌——组合计数
原文链接 https://www.cnblogs.com/cly-none/p/ZJOI2017cactus.html 给出一个\(n\)个点\(m\)条边的无向连通图,求有多少种加边方案,使得加完后 ...
- LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】
题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然 ...
- zjoi2017 仙人掌
题解: 好难的dp啊...看题解看了好久才看懂 http://blog.csdn.net/akak__ii/article/details/65935711 如果一开始的图就不是仙人掌,答案显然为0, ...
- 2019.02.07 bzoj4784: [Zjoi2017]仙人掌(仙人掌+树形dp)
传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi表示把iii为根的子树加边形成仙人掌的方案数. ...
- BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)
首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...
随机推荐
- Python的一些教程(转)
原文:http://blog.chinaunix.net/uid-26200547-id-3418038.html Python 安装配置及基本语法篇 Python 语言速成 Python 基本知识 ...
- Python自省(反射)指南(转)
原文:http://www.cnblogs.com/huxi/archive/2011/01/02/1924317.html 在笔者看来,自省和反射是一回事,当然其实我并不十分确定一定以及肯定,所以如 ...
- 10张Gif动图让你弄懂递归等概念
图像(包括动图)是传递信息的一种高效方式,往往能增强表象.记忆与思维等方面的反应强度.所谓一图胜千言,说的就是这个道理. 今天为大家整理了十张动图GIFS,有助于认识循环.递归.二分检索等概念的具体运 ...
- Vuex、axios以及跨域请求处理
一.Vuex 1.介绍 vuex是一个专门为Vue.js设计的集中式状态管理架构. 对于状态,我们把它理解为在data中需要共享给其他组件使用的部分数据. Vuex和单纯的全局对象有以下不同: 1. ...
- xpath草稿
(一)日期和简介 date:2017/12/18 name:a标签href属性提取抛出异常list index out of range (二)问题详细说明: 以百度新闻页面为例: 1.node_li ...
- awk经常使用字符串处理函数
gsub(regexp, replacement [, target]) Search target for all of the longest, leftmost, nonoverlapping ...
- 前端黑客之XSS、CSRF
XSS:跨站脚本,发生在目标网站中目标用户的浏览器层面上,当用户浏览器渲染整个HTML文档的过程中出现了不被预期的脚本指令并执行时,XSS就会发生. 绝大多数XSS攻击都会采用嵌入一段远程或者第三方域 ...
- 2016-2017 National Taiwan University World Final Team Selection Contest A - Hacker Cups and Balls
题目: Dreamoon likes algorithm competitions very much. But when he feels crazy because he cannot figur ...
- AJAX跨域问题解决方法(4)——调用方解决跨域
调用方解决跨域的方法只有一种,那就是隐藏跨域. 何为隐藏跨域? 隐藏跨域的核心思路是通过反向代理隐藏跨域以欺骗浏览器 什么是反向代理?反向代理是指通过中间服务器使得访问同一个域名的两个不同url最终会 ...
- [.net基础]访问修饰符
标题:[.net基础]访问修饰符 一.前言 基础掌握不牢固啊,所以记录下来. 二.方法访问修饰符Internal (1).创建工程ParentAndSon (2).添加类ModelA namespac ...