BZOJ4787/UOJ290 【ZJOI2017】仙人掌
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
题目链接:UOJ290
正解:$DP$+仙人掌
解题报告:
考虑环上的边,不可能在连边中再被覆盖,所以只需要考虑树边就好了。
把环拆掉,只剩下若干棵树,就是一个森林,最后把每棵树的答案用乘法原理合并起来就好了。
对于每个节点$u$,我们考虑他的子树的连边方案数如何统计。
如果我们强制每个结点的子树必须向外连一条边(显然最多一条),往上统计的话,
那么假设$u$的子树内没有向外连边,那么就是把儿子节点的$ans$乘起来。
如果向外连边了,就需要考虑互相连边的合法情况有多少种了。我们发现这个方案数只和儿子节点个数有关,可以很容易的用递推式来表示:
$g[n]=g[n-1]+g[n-2]*(n-1)$
预处理出$g$数组,每次对于每个节点先把儿子节点的$ans$全乘进来,接下来需要分类讨论节点$u$是不是一棵树的根。
如果是根的话,则不能向外连边,那么再乘上儿子节点个数的$g$就好了(相当于是组合了节点个数个点的互相连边方式);
否则,可以向外连边,那么把节点$u$本身也可以算进来,就是再乘上儿子节点个数$+1$的$g$。
//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
#include <bitset>
using namespace std;
typedef long long LL;
typedef long double LB;
typedef complex<double> C;
const double pi = acos(-1);
const int MAXN = 500011;
const int MAXM = 1000011;
const int mod = 998244353;
int n,m,ecnt,first[MAXN],to[MAXM],next[MAXM],father[MAXN],lu[MAXN],dfn[MAXN],deep[MAXN];
LL g[MAXN],f[MAXN],ans;
struct node{ int id,x; }a[MAXN];
inline bool cmp(node q,node qq){ return q.x<qq.x; }
inline void link(int x,int y){ next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; }
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void dfs(int x,int fa){
dfn[x]=++ecnt;
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==fa) continue;
if(!dfn[v]) father[v]=x,deep[v]=deep[x]+1,dfs(v,x);
}
} inline void dp(int x,bool rt){
lu[x]=-1; f[x]=1; int tot=0;//the number of son
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==father[x]) continue;
if(lu[v]!=1) continue;
tot++;
dp(v,0); f[x]*=f[v]; f[x]%=mod;
}
if(tot==0) return ;
if(!rt) f[x]*=g[tot+1],f[x]%=mod;
else f[x]*=g[tot],f[x]%=mod;
} inline void work(){
g[0]=g[1]=1; for(int i=2;i<=500001;i++) g[i]=g[i-1]+g[i-2]*(i-1),g[i]%=mod;
int T=getint(); int x,y; bool ck;
while(T--) {
n=getint(); m=getint(); ecnt=1;
for(int i=1;i<=n;i++) first[i]=father[i]=dfn[i]=deep[i]=lu[i]=0;
for(int i=1;i<=m;i++) {
x=getint(); y=getint();
link(x,y); link(y,x);
}
ecnt=0; deep[1]=1; dfs(1,0); ck=true;
for(int i=1;i<=m;i++) {//统计lu数组(到根的路径条数),判断是否为仙人掌
x=to[i<<1]; y=to[i<<1|1]; if(dfn[x]<dfn[y]) swap(x,y);
while(x!=y) {
lu[x]++;
if(lu[x]>2) { ck=false; break; }
x=father[x];
}
}
if(!ck) { printf("0\n"); continue; }
for(int i=1;i<=n;i++) a[i].id=i,a[i].x=deep[i];
sort(a+1,a+n+1,cmp);
ans=1;
for(int i=1;i<=n;i++) {
x=a[i].id;
if(lu[x]!=-1) {
dp(x,1);
ans*=f[x]; ans%=mod;
}
}
printf("%lld\n",ans);
}
} int main()
{
work();
return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
BZOJ4787/UOJ290 【ZJOI2017】仙人掌的更多相关文章
- 【BZOJ4784】[ZJOI2017]仙人掌(Tarjan,动态规划)
[BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙 ...
- [BZOJ4784][ZJOI2017]仙人掌(树形DP)
4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 312 Solved: 181[Submit][Status] ...
- bzoj4784 [Zjoi2017]仙人掌
Description 如果一个无自环无重边无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌.所谓简单环即不经过重复的结点的环. 现在九条可怜手上有一张无自环无重边的无向连通图,但是她觉得 ...
- ●洛谷P3687 [ZJOI2017]仙人掌
题链: https://www.luogu.org/problemnew/show/P3687题解: 计数DP,树形DP. (首先对于这个图来说,如果初始就不是仙人掌,那么就直接输出0) 然后由于本来 ...
- 【做题】ZJOI2017仙人掌——组合计数
原文链接 https://www.cnblogs.com/cly-none/p/ZJOI2017cactus.html 给出一个\(n\)个点\(m\)条边的无向连通图,求有多少种加边方案,使得加完后 ...
- LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】
题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然 ...
- zjoi2017 仙人掌
题解: 好难的dp啊...看题解看了好久才看懂 http://blog.csdn.net/akak__ii/article/details/65935711 如果一开始的图就不是仙人掌,答案显然为0, ...
- 2019.02.07 bzoj4784: [Zjoi2017]仙人掌(仙人掌+树形dp)
传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi表示把iii为根的子树加边形成仙人掌的方案数. ...
- BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)
首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...
随机推荐
- 配置stun服务器实现穿墙
Turn服务器的配置流程 Webrtc是基于P2P的,在两个客户端建立连接之前需要服务器建立连接,这时两台设备一般都处于一个或者多个NAT中,那么两台设备建立连接就需要穿墙技术. 这时就用到了turn ...
- CentOS6.8 yum 安装 mysql5.7.12 完美步骤
一,wget http://dev.mysql.com/get/mysql57-community-release-el6-8.noarch.rpm 二,yum localinstall mysql5 ...
- 使用stringstream格式化字符串
stringstream所在头文件为<sstream> 一般有如下常用功能: 1.安全格式化字符串 stringstream常用来安全的格式化若干个字符串,数值到一个缓冲区, 而不用担心溢 ...
- python阳历转阴历,阴历转阳历
#!/usr/bin/env python # coding:utf8 # author:Z time:2019/1/16 import sxtwl # 日历中文索引 ymc = [u"十一 ...
- C# 各种导入 Excel 文件的数据的方法总结
在导入之前都需要将上传的文件保存到服务器,所以避免重复的写这些代码,先贴出上传文件并保存到服务器指定路径的代码. protected void btnImport_Click(object sende ...
- IOS系统推送原理
IOS推送大致原理如下图 1.Provider:就是为指定IOS设备应用程序提供Push的服务器,(如果IOS设备的应用程序是客户端的话,那么Provider可以理解为服务端[消息的发起者]): 2. ...
- The 15th UESTC Programming Contest Preliminary B - B0n0 Path cdoj1559
地址:http://acm.uestc.edu.cn/#/problem/show/1559 题目: B0n0 Path Time Limit: 1500/500MS (Java/Others) ...
- 乐观锁的一种实现方式——CAS
在java里面,synchronized关键字就是一种悲观锁,因为在加上锁之后,只有当前线程可以操作变量,其他线程只有等待. CAS操作是一种乐观锁,它假设数据不会产生冲突,而是在提交的时候再进行版本 ...
- UI自动化测试框架之Selenium关键字驱动 (转)
摘要 自动化测试框架demo,用关键字的形式将测试逻辑封装在数据文件中,测试工具解释这些关键字即可对其应用自动化 一.原理及特点 1. 关键字驱动测试是数据驱动测试的一种改进类型 2. 主要 ...
- Python日期字符串比较
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 需要用python的脚本来快速检测一个文件内的二个时间日期字符串的大小,其实实现很简单,首先一些 ...