题面

传送门

题解

我数学好像学得太差了

据说根据反三角函数求导公式

\[{d\over dx}\arcsin x={1\over \sqrt{1-x^2}}
\]

\[{d\over dx}\arctan x={1\over 1+x^2}
\]

先看\(\arcsin\),可以发现有

\[{d\over dx}F(x)={A'(x)\over \sqrt{1-A^2(x)}}
\]

\[F(x)=\int {A'(x)\over \sqrt{1-A^2(x)}} dx
\]

同理可得\(\arctan\)

\[F(x)=\int {A'(x)\over 1+A^2(x)} dx
\]

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]=' ';
}
const int N=(1<<18)+5,P=998244353,inv2=499122177;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
return res;
}
int inv[N],r[21][N],rt[2][N<<1],lg[N],lim,d;
int iinv(R int x){return x<=262144?inv[x]:mul(P-P/x,iinv(P%x));}
void Pre(){
fp(d,1,18){
fp(i,1,(1<<d)-1)r[d][i]=(r[d][i>>1]>>1)|((i&1)<<(d-1));
lg[1<<d]=d;
}
inv[0]=inv[1]=1;
fp(i,2,262144)inv[i]=mul(P-P/i,inv[P%i]);
for(R int t=(P-1)>>1,i=1,x,y;i<=262144;i<<=1,t>>=1){
x=ksm(3,t),y=iinv(x),rt[0][i]=rt[1][i]=1;
fp(k,1,i-1)
rt[1][i+k]=mul(rt[1][i+k-1],x),
rt[0][i+k]=mul(rt[0][i+k-1],y);
}
}
void NTT(int *A,int ty){
fp(i,0,lim-1)if(i<r[d][i])swap(A[i],A[r[d][i]]);
for(R int mid=1;mid<lim;mid<<=1)
for(R int j=0,t;j<lim;j+=(mid<<1))
fp(k,0,mid-1)
A[j+k+mid]=dec(A[j+k],t=mul(rt[ty][mid+k],A[j+k+mid])),
A[j+k]=add(A[j+k],t);
if(!ty)fp(i,0,lim-1)A[i]=mul(A[i],inv[lim]);
}
void Inv(int *a,int *b,int len){
if(len==1)return b[0]=iinv(a[0]),void();
Inv(a,b,len>>1);
static int A[N],B[N];lim=(len<<1),d=lg[lim];
fp(i,0,len-1)A[i]=a[i],B[i]=b[i];
fp(i,len,lim-1)A[i]=B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],mul(B[i],B[i]));
NTT(A,0);
fp(i,0,len-1)b[i]=dec(add(b[i],b[i]),A[i]);
fp(i,len,lim-1)b[i]=0;
}
void Sqrt(int *a,int *b,int len){
if(len==1)return b[0]=1,void();
Sqrt(a,b,len>>1);
static int A[N],B[N];
fp(i,0,len-1)A[i]=a[i];Inv(b,B,len);
lim=(len<<1),d=lg[lim];
fp(i,len,lim-1)A[i]=B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
NTT(A,0);
fp(i,0,len-1)b[i]=mul(add(b[i],A[i]),inv2);
fp(i,len,lim-1)b[i]=0;
}
void Arcsin(int *a,int *b,int len){
static int A[N],B[N];
lim=(len<<1),d=lg[lim];
fp(i,0,len-1)A[i]=a[i];fp(i,len,lim-1)A[i]=0;
NTT(A,1);fp(i,0,lim-1)A[i]=mul(A[i],A[i]);
NTT(A,0);fp(i,0,len-1)A[i]=P-A[i];++A[0];
Sqrt(A,B,len),Inv(B,A,len);
lim=(len<<1),d=lg[lim];
fp(i,1,len-1)B[i-1]=mul(a[i],i);B[len-1]=0;
fp(i,len,lim-1)A[i]=B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
NTT(A,0);
fp(i,1,len-1)b[i]=mul(A[i-1],inv[i]);b[0]=0;
}
void Arctan(int *a,int *b,int len){
static int A[N],B[N];
lim=(len<<1),d=lg[lim];
fp(i,0,len-1)A[i]=a[i];fp(i,len,lim-1)A[i]=0;
NTT(A,1);fp(i,0,lim-1)A[i]=mul(A[i],A[i]);
NTT(A,0);++A[0];
Inv(A,B,len);
lim=(len<<1),d=lg[lim];
fp(i,1,len-1)A[i-1]=mul(a[i],i);A[len-1]=0;
fp(i,len,lim-1)A[i]=B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
NTT(A,0);
fp(i,1,len-1)b[i]=mul(A[i-1],inv[i]);b[0]=0;
}
int A[N],B[N],n,ty;
int main(){
// freopen("testdata.in","r",stdin);
n=read(),ty=read(),Pre();
fp(i,0,n-1)A[i]=read();
int len=1;while(len<=n)len<<=1;
if(ty)Arctan(A,B,len);else Arcsin(A,B,len);
fp(i,0,n-1)print(B[i]);
return Ot(),0;
}

洛谷P5265 【模板】多项式反三角函数的更多相关文章

  1. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  2. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  3. 洛谷.4512.[模板]多项式除法(NTT)

    题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...

  4. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  5. 洛谷 P4512 [模板] 多项式除法

    题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...

  6. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  7. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  8. 多项式求逆元详解+模板 【洛谷P4238】多项式求逆

    概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...

  9. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  10. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

随机推荐

  1. 安装atop笔记

    atop 官网: https://www.atoptool.nl/downloadatop.php 1.直接下载源码安装: https://www.atoptool.nl/download/atop- ...

  2. UV mapping

    [UV mapping] UV mapping is the 3D modeling process of making a 2D image representation of a 3D model ...

  3. Spring Data JPA + layui的前台分页插件layPage实现页面的分页

    一.后台代码: 1.1 controller层代码 @RequestMapping("/xxxxxx") public String showInformationCode(Str ...

  4. iOS倒计时

    现在开发基本上都有发送验证码,倒计时,下面说一种 #import <UIKit/UIKit.h> @interface UIButton (CountDown) -(void)startT ...

  5. MAC命令大全

      OSX 的文件系统 OSX 采用的Unix文件系统,所有文件都挂在跟目录 / 下面,所以不在要有Windows 下的盘符概念. 你在桌面上看到的硬盘都挂在 /Volumes 下. 比如接上个叫做 ...

  6. jmeter-plugins-dubbo & DevToolBox

    jmeter-plugins-dubbo使用 A. 下载jmeter并安装,http://jmeter.apache.org/download_jmeter.cgi(文中使用的版本是3.3,理论上高版 ...

  7. [C++] Sign and magnitude,Ones' complement and Two's complement

    Sign and magnitude,Ones' complement and Two's complement

  8. qy Undefied index报错

    目测是不支持如下写法 $value['status'] = $map[$value['status']];

  9. rpm管理

    系统上rpm命令管理程序包: 安装.卸载.升级.查询.校验.数据库维护 安装: rpm {-i|--install} [install-options] PACKAGE_FILE ... -v: ve ...

  10. https://itunes.apple.com/cn/app/apache-overkill/id410553807?mt=8uo%3D6

    https://itunes.apple.com/cn/app/apache-overkill/id410553807?mt=8uo%3D6 http://eplusgames.net/games/s ...