NOI.AC省选模拟赛第一场 T1 (树上高斯消元)
很容易对于每个点列出式子
\(f_{x,y}=(f_{x,y-1}+f_{x,y}+f_{x,y+1}+f_{x+1,y})/4\)(边角转移类似,略)
这个转移是相互依赖的就gg了
不过你可以把这个转移移项,改成右侧没有\(f_{x,y}\)的式子
不过他还是相互依赖的
但是上下两行之间转移不是依赖的
所以你可以每一行跑一遍高斯消元
由于一行的转移是一条链
树上高斯消元可以做到 \(O(n)\) 或 \(O(n \log p)\)(模意义下逆元)
而链上的情况更简单,直接xjb搞一下就行了
具体是将\(f_{x,y-1}\)和\(f_{x,y}\)之间的线性关系搞出来,然后根据\(f_{x,y}\)的式子将\(f_{x,y+1}\)的线性关系也搞出来
最后你会发现\(f_{x,m-1}\)和\(f_{x,m}\)之间搞出了两个线性关系,就可以解出来了
然后你会发现前面的依次带入进去就行了
丑代码
注意特判m=1
#include <cstdio>
using namespace std;
const int xkj = 998244353, inv2 = 499122177, inv3 = 332748118;
int n, m, val[1010], x[1010];
int k[1010], b[1010];
int qpow(int x, int y)
{
int res = 1;
for (x %= xkj; y > 0; y >>= 1, x = x * (long long)x % xkj)
if (y & 1) res = res * (long long)x % xkj;
return res;
}
void gao()
{
if (m == 1) { val[1] += 2; return; }
k[2] = inv2, b[2] = (val[1] + 3) * (long long)inv2 % xkj;
for (int i = 2; i <= m - 1; i++) //x[i - 1] = k[i] * x[i] + b[i]
{
k[i + 1] = qpow((3 - k[i] + xkj) % xkj, xkj - 2);
b[i + 1] = (val[i] + b[i] + 4) % xkj * (long long)k[i + 1] % xkj;
}
x[m] = (val[m] + b[m] + 3) % xkj * (long long)qpow((2 - k[m] + xkj) % xkj, xkj - 2) % xkj;
for (int i = m - 1; i >= 1; i--) x[i] = (k[i + 1] * (long long)x[i + 1] % xkj + b[i + 1]) % xkj;
for (int i = 1; i <= m; i++) val[i] = x[i];
}
int main()
{
int x, y;
scanf("%d%d%d%d", &n, &m, &x, &y); n -= x - 1;
for (int i = 2; i <= n; i++) gao();
printf("%d\n", val[y]);
return 0;
}
迷思:树上高斯消元
我们考虑随便拎出一个度数为1的点开始dfs1这个树,在回溯时得到儿子和父亲之间的线性关系
最后你会得到根节点和根节点的儿子之间的两个线性关系,你就可以得到这两个点的值
然后你再dfs2下去,由于线性关系已经确定就可以根据某个点的父亲的值算出这个点的值了
NOI.AC省选模拟赛第一场 T1 (树上高斯消元)的更多相关文章
- [noi.ac省选模拟赛]第11场题解集合
题目 比赛界面. T1 比较简单.容易想到是求鱼竿的最大独立集.由于题目的鱼竿可以被分割为二分图,就可以想到最大匹配. 尝试建边之后会发现边的数量不小,但联系题目性质会发现对于一条鱼竿,它 ...
- [noi.ac省选模拟赛]第12场题解集合
题目 比赛界面. T1 数据范围明示直接\(O(n^2)\)计算,问题就在如何快速计算. 树上路径统计通常会用到差分方法.这里有两棵树,因此我们可以做"差分套差分",在 A 树上对 ...
- [noi.ac省选模拟赛]第10场题解集合
题目 比赛界面. T1 不难想到,对于一个与\(k\)根棍子连接的轨道,我们可以将它拆分成\(k+1\)个点,表示这条轨道不同的\(k+1\)段. 那么,棍子就成为了点与点之间的边.可以发现,按照棍子 ...
- [NOI.AC省选模拟赛3.30] Mas的童年 [二进制乱搞]
题面 传送门 思路 这题其实蛮好想的......就是我考试的时候zz了,一直没有想到标记过的可以不再标记,总复杂度是$O(n)$ 首先我们求个前缀和,那么$ans_i=max(pre[j]+pre[i ...
- [NOI.AC省选模拟赛3.23] 集合 [数学]
题面 传送门 一句话题意: 给定$n\leq 1e9,k\leq 1e7,T\leq 1e9$ 设全集$U=\lbrace 1,2,3,...n\rbrace $,求$(min_{x\in S}\lb ...
- [NOI.AC省选模拟赛3.31] 星辰大海 [半平面交]
题面 传送门 思路 懒得解释了......也是比较简单的结论 但是自己看到几何就退缩了...... 下周之内写一个计算几何的学习笔记! Code #include<iostream> #i ...
- [NOI.AC省选模拟赛3.31] 附耳而至 [平面图+最小割]
题面 传送门 思路 其实就是很明显的平面图模型. 不咕咕咕的平面图学习笔记 用最左转线求出对偶图的点,以及原图中每个边两侧的点是谁 建立网络流图: 源点连接至每一个对偶图点,权值为这个区域的光明能量 ...
- [NOI.AC省选模拟赛3.23] 染色 [点分治+BFS序]
题面 传送门 重要思想 真的是没想到,我很久以来一直以为总会有应用的$BFS$序,最终居然是以这种方式出现在题目中 笔记:$BFS$序可以用来处理限制点对距离的题目(综合点分树使用) 思路 本题中首先 ...
- [noi.ac省选模拟赛20200606]赌怪
题目 点这里看题目. 分析 先特判掉\(K=2\)的情况. 首先可以考虑到一个简单 DP : \(f(i)\):前\(i\)张牌的最大贡献. 转移可以\(O(n^2)\)地枚举区间 ...
随机推荐
- AM使用指南:如何在Managed Bean中获取AM实例?
AM是放置服务方法的地方,有时我们需要在Managed Bean中调用这些方法.要调用这些方法,首先要在Managed Bean中获取AM实例.这里要用到<ADF工具类:ADFUtil.java ...
- spring.net 继承
. <object id="parent" type="Bll.Parent, HRABLL" > <property name=" ...
- Redis初学笔记
1.官网概述 Redis is an open source (BSD licensed), in-memory data structure store, used as database, cac ...
- 《Maven实战》
原创作者: 许晓斌 阅读:61148次 评论:19条 更新时间:2011-06-23 你是否早已厌倦了日复一日的手工构建工作?你是否对各个项目风格迥异的构建系统感到恐惧?Maven ...
- rabbitMQ日常管理(转)
原文:http://blog.sina.com.cn/s/blog_790c59140102x5vk.html 一.网页登录方法 http://127.0.0.1:15672/ 用户名和密码默认为gu ...
- hadoop理解
Hadoop的主核心有2部分: 1,HDFS 2, MapReduce 首先: HDFS HDFS(Hadoop Distributed File System,Hadoop分布式文件系统),它是一个 ...
- HDU 6053 TrickGCD (莫比乌斯函数)
题意:给一个序列A,要求构造序列B,使得 Bi <= Ai, gcd(Bi) > 1, 1 <= i <= n, 输出构造的方法数. 析:首先这个题直接暴力是不可能解决的,可以 ...
- HDU 6096 String (AC自动机)
题意:给出n个字符串和q个询问,每次询问给出两个串 p 和 s .要求统计所有字符串中前缀为 p 且后缀为 s (不可重叠)的字符串的数量. 析:真是觉得没有思路啊,看了官方题解,真是好复杂. 假设原 ...
- HDU 1159 Common Subsequence (LCS)
题意:给定两行字符串,求最长公共子序列. 析:dp[i][j] 表示第一串以 i 个结尾和第二个串以 j 个结尾,最长公共子序列,剩下的就简单了. 代码如下: #pragma comment(link ...
- 编写高质量代码改善C#程序的157个建议——建议141:不知道该不该用大括号时,就用
建议141:不知道该不该用大括号时,就用 如果if条件语句只有一行语句,要不要使用大括号? 答案是:建议使用.一个括号不会增加多少代码,但是却让代码看上去增加了一致性.括号本身只会让代码更具条理性. ...