转 tensorflow模型保存 与 加载
使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。看完本文,相信你一定会有收获!
1 Tensorflow模型文件
我们在checkpoint_dir目录下保存的文件结构如下:
|--checkpoint_dir
| |--checkpoint
| |--MyModel.meta
| |--MyModel.data-00000-of-00001
| |--MyModel.index
1.1 meta文件
MyModel.meta文件保存的是图结构,meta文件是pb(protocol buffer)格式文件,包含变量、op、集合等。
1.2 ckpt文件
ckpt文件是二进制文件,保存了所有的weights、biases、gradients等变量。在tensorflow 0.11之前,保存在.ckpt文件中。0.11后,通过两个文件保存,如:
MyModel.data-00000-of-00001
MyModel.index
1.3 checkpoint文件
我们还可以看,checkpoint_dir目录下还有checkpoint文件,该文件是个文本文件,里面记录了保存的最新的checkpoint文件以及其它checkpoint文件列表。在inference时,可以通过修改这个文件,指定使用哪个model
2 保存Tensorflow模型
tensorflow 提供了tf.train.Saver
类来保存模型,值得注意的是,在tensorflow中,变量是存在于Session环境中,也就是说,只有在Session环境下才会存有变量值,因此,保存模型时需要传入session:
saver = tf.train.Saver()
saver.save(sess,"./checkpoint_dir/MyModel")
看一个简单例子:
import tensorflow as tf
w1 = tf.Variable(tf.random_normal(shape=[2]), name='w1')
w2 = tf.Variable(tf.random_normal(shape=[5]), name='w2')
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, './checkpoint_dir/MyModel')
执行后,在checkpoint_dir目录下创建模型文件如下:
checkpoint
MyModel.data-00000-of-00001
MyModel.index
MyModel.meta
另外,如果想要在1000次迭代后,再保存模型,只需设置global_step
参数即可:
saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)
保存的模型文件名称会在后面加-1000
,如下:
checkpoint
MyModel-1000.data-00000-of-00001
MyModel-1000.index
MyModel-1000.meta
在实际训练中,我们可能会在每1000次迭代中保存一次模型数据,但是由于图是不变的,没必要每次都去保存,可以通过如下方式指定不保存图:
saver.save(sess, './checkpoint_dir/MyModel',global_step=step,write_meta_graph=False)
另一种比较实用的是,如果你希望每2小时保存一次模型,并且只保存最近的5个模型文件:
tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=2)
注意:tensorflow默认只会保存最近的5个模型文件,如果你希望保存更多,可以通过
max_to_keep
来指定
如果我们不对tf.train.Saver
指定任何参数,默认会保存所有变量。如果你不想保存所有变量,而只保存一部分变量,可以通过指定variables/collections。在创建tf.train.Saver
实例时,通过将需要保存的变量构造list或者dictionary,传入到Saver中:
import tensorflow as tf
w1 = tf.Variable(tf.random_normal(shape=[2]), name='w1')
w2 = tf.Variable(tf.random_normal(shape=[5]), name='w2')
saver = tf.train.Saver([w1,w2])
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)
3 导入训练好的模型
在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。因此,在导入模型时,也要分为2步:构造网络图和加载参数
3.1 构造网络图
一个比较笨的方法是,手敲代码,实现跟模型一模一样的图结构。其实,我们既然已经保存了图,那就没必要在去手写一次图结构代码。
saver=tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
上面一行代码,就把图加载进来了
3.2 加载参数
仅仅有图并没有用,更重要的是,我们需要前面训练好的模型参数(即weights、biases等),本文第2节提到过,变量值需要依赖于Session,因此在加载参数时,先要构造好Session:
import tensorflow as tf
with tf.Session() as sess:
new_saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./checkpoint_dir'))
此时,W1和W2加载进了图,并且可以被访问:
import tensorflow as tf
with tf.Session() as sess:
saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
saver.restore(sess,tf.train.latest_checkpoint('./checkpoint_dir'))
print(sess.run('w1:0'))
##Model has been restored. Above statement will print the saved value
执行后,打印如下:
[ 0.51480412 -0.56989086]
4 使用恢复的模型
前面我们理解了如何保存和恢复模型,很多时候,我们希望使用一些已经训练好的模型,如prediction、fine-tuning以及进一步训练等。这时候,我们可能需要获取训练好的模型中的一些中间结果值,可以通过graph.get_tensor_by_name('w1:0')
来获取,注意w1:0
是tensor的name。
假设我们有一个简单的网络模型,代码如下:
import tensorflow as tf
w1 = tf.placeholder("float", name="w1")
w2 = tf.placeholder("float", name="w2")
b1= tf.Variable(2.0,name="bias")
#定义一个op,用于后面恢复
w3 = tf.add(w1,w2)
w4 = tf.multiply(w3,b1,name="op_to_restore")
sess = tf.Session()
sess.run(tf.global_variables_initializer())
#创建一个Saver对象,用于保存所有变量
#创建一个Saver对象,用于保存所有变量
saver = tf.train.Saver()
#通过传入数据,执行op
print(sess.run(w4,feed_dict ={w1:4,w2:8}))
#打印 24.0 ==>(w1+w2)*b1
#现在保存模型
saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)
接下来我们使用graph.get_tensor_by_name()
方法来操纵这个保存的模型。
import tensorflow as tf
sess=tf.Session()
#先加载图和参数变量
saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
saver.restore(sess, tf.train.latest_checkpoint('./checkpoint_dir'))
# 访问placeholders变量,并且创建feed-dict来作为placeholders的新值
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict ={w1:13.0,w2:17.0}
#接下来,访问你想要执行的op
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")
print(sess.run(op_to_restore,feed_dict))
#打印结果为60.0==>(13+17)*2
注意:保存模型时,只会保存变量的值,placeholder里面的值不会被保存
如果你不仅仅是用训练好的模型,还要加入一些op,或者说加入一些layers并训练新的模型,可以通过一个简单例子来看如何操作:
import tensorflow as tf
sess = tf.Session()
# 先加载图和变量
saver = tf.train.import_meta_graph('my_test_model-1000.meta')
saver.restore(sess, tf.train.latest_checkpoint('./'))
# 访问placeholders变量,并且创建feed-dict来作为placeholders的新值
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict = {w1: 13.0, w2: 17.0}
#接下来,访问你想要执行的op
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")
# 在当前图中能够加入op
add_on_op = tf.multiply(op_to_restore, 2)
print (sess.run(add_on_op, feed_dict)) # 打印120.0==>(13+17)*2*2
如果只想恢复图的一部分,并且再加入其它的op用于fine-tuning。只需通过graph.get_tensor_by_name()
方法获取需要的op,并且在此基础上建立图,看一个简单例子,假设我们需要在训练好的VGG网络使用图,并且修改最后一层,将输出改为2,用于fine-tuning新数据:
......
......
saver = tf.train.import_meta_graph('vgg.meta')
# 访问图
graph = tf.get_default_graph()
#访问用于fine-tuning的output
fc7= graph.get_tensor_by_name('fc7:0')
#如果你想修改最后一层梯度,需要如下
fc7 = tf.stop_gradient(fc7) # It's an identity function
fc7_shape= fc7.get_shape().as_list()
new_outputs=2
weights = tf.Variable(tf.truncated_normal([fc7_shape[3], num_outputs], stddev=0.05))
biases = tf.Variable(tf.constant(0.05, shape=[num_outputs]))
output = tf.matmul(fc7, weights) + biases
pred = tf.nn.softmax(output)
# Now, you run this with fine-tuning data in sess.run()
原文链接:
https://blog.csdn.net/huachao1001/article/details/78501928
转 tensorflow模型保存 与 加载的更多相关文章
- tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...
- Tensorflow模型保存与加载
在使用Tensorflow时,我们经常要将以训练好的模型保存到本地或者使用别人已训练好的模型,因此,作此笔记记录下来. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提 ...
- tensorflow实现线性回归、以及模型保存与加载
内容:包含tensorflow变量作用域.tensorboard收集.模型保存与加载.自定义命令行参数 1.知识点 """ 1.训练过程: 1.准备好特征和目标值 2.建 ...
- [PyTorch 学习笔记] 7.1 模型保存与加载
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/model_save.py https://githu ...
- sklearn模型保存与加载
sklearn模型保存与加载 sklearn模型的保存和加载API 线性回归的模型保存加载案例 保存模型 sklearn模型的保存和加载API from sklearn.externals impor ...
- TensorFlow构建卷积神经网络/模型保存与加载/正则化
TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import ...
- TensorFlow的模型保存与加载
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf #tensorboard --logdir=&qu ...
- tensorflow 之模型的保存与加载(一)
怎样让通过训练的神经网络模型得以复用? 本文先介绍简单的模型保存与加载的方法,后续文章再慢慢深入解读. #!/usr/bin/env python3 #-*- coding:utf-8 -*- ### ...
- TensorFlow保存、加载模型参数 | 原理描述及踩坑经验总结
写在前面 我之前使用的LSTM计算单元是根据其前向传播的计算公式手动实现的,这两天想要和TensorFlow自带的tf.nn.rnn_cell.BasicLSTMCell()比较一下,看看哪个训练速度 ...
随机推荐
- OOM问题分析
一.背景 在实际的开发中,性能问题的分析一直是运维团队的痛点,无论是缓慢内存溢出还是迅速的内存爆炸,对系统和业务的破坏都是快速而巨大的,此贴分享下简单的分析内存问题的经验. 二.相关名词 分代:根据对 ...
- Yarn架构
jobtracker存在单点故障问题 jobtracker只支持mapreduce,计算框架不具有可扩展性 jobtracker是性能瓶颈 yarn可以整合不同的计算框架,提高资源利用率 yarn的基 ...
- (转)MFC中Doc,View,MainFrmae,App各指针的互相获取
App是应用域,所有的域中的东西都可以通过全局函数访问到它. MainFrame是主框架,也基本可以用全局函数访问到. MainFrame下是若干个ChildFrame,ChildFrame中若干个V ...
- mysql相关配置
http://www.cnblogs.com/cnblogsfans/archive/2009/09/21/1570942.html http://www.jb51.net/article/31902 ...
- yii2引入js和css
assets/AppAsset.php public $css = [ 'css/site.css', 'css/font/css/font-awesome.min.css', 'css/doc.cs ...
- PKU 3169 Layout(差分约束系统+Bellman Ford)
题目大意:原题链接 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们的编号是相同的 ...
- 下拉刷新&上拉加载
效果演示 核心codehtml <ion-view view-title="学生list"> <ion-content > <ion-refreshe ...
- 2017 计蒜之道 初赛 第三场 D. 腾讯狼人杀 (点边都带权的最大密度子图)
点边都带权的最大密度子图,且会有必须选的点. 求\(\frac{\sum w_e}{k*(2n-k)}\)的最大值,其中k为子图点数 设\[h(g) = \sum w_e - g*(2nk-k^2)\ ...
- CodeForces - 343C Read Time (二分+贪心)
题意:有N个指针头,M个标记,用这N个针头扫描所有的标记,针头之间互不影响,求扫描完M个标记的最短时间 分析:二分搜答案,mid为时间限制,则只要所有的点在mid秒内被扫描到即可. 对于每个指针,若其 ...
- Docker+.Net Core 的那些事儿-2.创建Docker镜像
1.从store.docker.com获取.net core镜像 docker pull microsoft/dotnet 2.创建一个.net core项目,并发布 在上篇文章结尾建立的工作目录下, ...