1 均值滤波介绍

滤波是滤波是将信号中特定波段频率滤除的操作,是从含有干扰的接收信号中提取有用信号的一种技术。

均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(如3×3模板:以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身),再用模板中的全体像素的平均值来代替原来像素值。

均值滤波效果:平滑线性滤波处理降低了图像的“尖锐”变化。由于典型的随机噪声由灰度级的急剧变化组成,因此常见的平滑处理的应用就是降低噪声。均值滤波器的主要应用是去除图像中的不相关细节,其中“不相关”是指与滤波器模板尺寸相比较小的像素区域。然而,由于图像的边缘也是由图像灰度的尖锐变化带来的特性,所以均值滤波处理还是存在着边缘模糊的负面效应。

2 均值滤波算法实现(C语言)

 // junzhilvbo.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include "stdlib.h"
#include "string.h" #define DATA_X 256 //数字图像水平像素个数
#define DATA_Y 256 //数字图像竖直像素个数 void OpenFile(const char *cFilePath , int nOriginalData[DATA_Y][DATA_X])
{
printf("正在获取数据......\n");
FILE *fp ;
fp = fopen(cFilePath , "r");
if(NULL == fp)
{
printf("open file failed! \n");
return ;
} unsigned char *pData = (unsigned char *)malloc(sizeof(unsigned char)*DATA_X*DATA_Y);
if(NULL == pData)
{
printf("memory malloc failed!\n");
return ;
} fread(pData , sizeof(unsigned char)*DATA_X*DATA_Y , , fp); int count_x = ;
int count_y = ; for(;count_y < DATA_Y ; count_y++)
{
for(; count_x < DATA_X ;count_x++)
{
nOriginalData[count_y][count_x] = pData[count_y*DATA_Y+count_x];
}
} free(pData);
fclose(fp); return ;
} void SaveFile(const char *cFilePath , int nResultData[DATA_Y][DATA_X])
{
printf("正在保存数据......\n");
int count_x,count_y; FILE *fp ;
fp = fopen(cFilePath , "w");
if(NULL == fp)
{
printf("open file failed! \n");
return ;
} for(count_y=;count_y<DATA_Y;count_y++)
{
for(count_x=;count_x<DATA_X;count_x++)
{
fwrite(&nResultData[count_y][count_x],,,fp);
}
} fclose(fp);
printf("文件保存成功! \n"); return ;
} bool JunZhiLvBo(const int nOriginalData[DATA_Y][DATA_X], int nResultData[DATA_Y][DATA_X])
{
printf("正在进行均值滤波......\n");
int count_x ,count_y ; /*3*3模版滤波计算,不计算边缘像素*/
for(count_y = ; count_y < DATA_Y ; count_y++)
{
for(count_x = ; count_x < DATA_X ;count_x++)
{
nResultData[count_y][count_x] = (int)((nOriginalData[count_y-][count_x-]+
nOriginalData[count_y-][count_x] +
nOriginalData[count_y-][count_x+]+
nOriginalData[count_y][count_x-] +
nOriginalData[count_y][count_x] +
nOriginalData[count_y][count_x+] +
nOriginalData[count_y+][count_x-]+
nOriginalData[count_y+][count_x] +
nOriginalData[count_y+][count_x+])/);
}
} /*对四个边缘直接进行赋值处理*/
for(count_x=;count_x<DATA_X;count_x++) //水平边缘像素等于原来像素灰度值
{
nResultData[][count_x]=nOriginalData[][count_x];
nResultData[DATA_Y-][count_x]=nOriginalData[DATA_Y-][count_x];
}
for(count_y=;count_y<DATA_Y-;count_y++) //竖直边缘像素等于原来像素灰度值
{
nResultData[count_y][]=nOriginalData[count_y][];
nResultData[count_y][DATA_X-]=nOriginalData[count_y][DATA_X-];
} return true ;
} int _tmain(int argc, _TCHAR* argv[])
{
int nOriginalData[DATA_Y][DATA_X]; //保存原始图像灰度值
int nResultData[DATA_Y][DATA_X]; //保存滤波后的灰度值 memset(nOriginalData,,sizeof(nOriginalData)); //初始化数组
memset(nResultData,,sizeof(nResultData)); char cOpenFilePath[] = "Lena.raw"; //图像文件路径 OpenFile(cOpenFilePath,nOriginalData); if(!JunZhiLvBo(nOriginalData,nResultData)) //滤波计算
{
printf("操作失败!\n");
return ;
} char cSaveFilePath[] = "Result.raw"; //文件保存路径 SaveFile(cSaveFilePath,nResultData); return ;
}

3 均值滤波算法效果对比

均值滤波之前:                                均值滤波之后:

 

图像处理之均值滤波介绍及C算法实现的更多相关文章

  1. opencv3.2.0图像处理之均值滤波blur API函数

    ##.均值滤波:blur函数 ##函数原型 : ,-),int borderType=BORDER_DEFAULT) (参数详解同boxFilter函数) /**********新建Qt控制台程序** ...

  2. 图像处理之中值滤波介绍及C实现

    1 中值滤波概述 中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号平滑处理技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值. 中值滤波的基本原理是把数字图像或数字序 ...

  3. opencv-10-图像滤波-噪声添加与均值滤波-含opencv C++ 代码实现

    开始之前 再说上一篇文章中, 我们想按照噪声产生, 然后将降噪的, 但是限于篇幅, 我就放在这一篇里面了, 说起图像的噪声问题就又回到了我们上一章的内容, 把噪声当作信号处理, 实际上数字图像处理实际 ...

  4. 基于FPGA的均值滤波算法实现

    我们为了实现动态图像的滤波算法,用串口发送图像数据到FPGA开发板,经FPGA进行图像处理算法后,动态显示到VGA显示屏上,前面我们把硬件平台已经搭建完成了,后面我们将利用这个硬件基础平台上来实现基于 ...

  5. 基础图像处理之混合空间增强——(Java:拉普拉斯锐化、Sobel边缘检测、均值滤波、伽马变换)

    相信看过冈萨雷斯第三版数字图像处理的童鞋都知道,里面涉及到了很多的基础图像处理的算法,今天,就专门借用其中一个混合空间增强的案例,来将常见的几种图像处理算法集合起来,看能发生什么样的化学反应 首先,通 ...

  6. 基于MATLAB的均值滤波算法实现

    在图像采集和生成中会不可避免的引入噪声,图像噪声是指存在于图像数据中的不必要的或多余的干扰信息,这对我们对图像信息的提取造成干扰,所以要进行去噪声处理,常见的去除噪声的方法有均值滤波.中值滤波.高斯滤 ...

  7. Win8Metro(C#)数字图像处理--2.9图像均值滤波

    原文:Win8Metro(C#)数字图像处理--2.9图像均值滤波  [函数名称] 图像均值滤波函数MeanFilterProcess(WriteableBitmap src) [函数代码]    ...

  8. 学习 opencv---(7) 线性邻域滤波专场:方框滤波,均值滤波,高斯滤波

    本篇文章中,我们一起仔细探讨了OpenCV图像处理技术中比较热门的图像滤波操作.图像滤波系列文章浅墨准备花两次更新的时间来讲,此为上篇,为大家剖析了"方框滤波","均值滤 ...

  9. 滤波器——BoxBlur均值滤波及其快速实现

    个人博客地址:滤波器--BoxBlur均值滤波及其快速实现 动机:卷积核.滤波器.卷积.相关 在数字图像处理的语境里,图像一般是二维或三维的矩阵,卷积核(kernel)和滤波器(filter)通常指代 ...

随机推荐

  1. Lua学习笔记(7): 模块

    模块 模块就像是c语言工程项目目录里的.h.c文件或外部依赖项,为某一个文件的代码提供依赖,其实就是把工作分成几个模块,方便项目的管理,提高开发效率和维护效率 在Lua中,模块其实就是一个表,实现方式 ...

  2. 谈谈你对Java异常处理机制的理解

    先谈谈我的理解:异常处理机制可以说是让我们编写的程序运行起来更加的健壮,无论是在程序调试.运行期间发生的异常情况的捕获,都提供的有效的补救动作,任何业务逻辑都会存在异常情况,这时只需要记录这些异常情况 ...

  3. dalao自动报表邮件2.0

    经过昨天的修改优化后,dalao收到了不是“木马”的邮件,欣慰地点了点头,“不错,不错,这几张表设计的简洁明了,看着有货!不过呀,,,这些表的数据太多了一点,十几天的数据一大溜,能不能再简洁一点,做一 ...

  4. Maven私库

    <server> <id>releases</id> <username>admin</username> <password> ...

  5. POJ 1417 并查集 dp

    After having drifted about in a small boat for a couple of days, Akira Crusoe Maeda was finally cast ...

  6. php-fpm配置

    [global] error_log = /letv/log/php-fpm_error.log [www] user = apache group = apache listen = 127.0.0 ...

  7. Linux学习——echo和read命令用法

    转载自http://www.runoob.com/linux/linux-comm-read.html http://www.178linux.com/76331 echo命令 本文列举了echo命令 ...

  8. 20181023-4 Beta阶段第1周/共2周 Scrum立会报告+燃尽图 01

    作业要求:[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2383] 版本控制:[https://git.coding.net/lglr2 ...

  9. 阿帕奇web服务器下载部署安装运行

    链接: https://jingyan.baidu.com/album/d8072ac47baf0eec95cefdca.html?picindex=4 1.apache服务安装成功可是启动失败“wi ...

  10. 阅读笔记《我是一只IT小小鸟》

    我是一只IT小小鸟 我们在尝试新的事物的时候,总是会遇到各种各样的困难,不同的人会在碰壁不同的次数之后退出.用程序员喜欢的话来说就是,我们都在for循环,区别在于你是什么情况下break;的.有的人退 ...