HDU 3416 Marriage Match IV (Dijkstra+最大流)
题意:N个点M条边的有向图,给定起点S和终点T,求每条边都不重复的S-->T的最短路有多少条。
分析:首先第一步需要找出所有可能最短路上的边。怎么高效地求出呢?可以这样:先对起点S,跑出最短路;对于每条边 e(u,v,w),若d[u]+w == d[v]。那么e就是最短路上的一条边。在前向星存储的图中遍历即可。网上还有题解用的方法是分别从S和T跑两次最短路,再判断d1[u]+d2[v]+w == d1[T],其实思路是相似的,但是没必要多跑一遍。
用SPFA就会玄学超时,但其他人却没有;之后改用迪杰斯特拉就跑得很快。
之后问题可转化为求解S到T的最大流。将所求得的最短路的边,建新图,每条边的流量都是1。再用SAP求出S到T的最大流,即最终答案。
#include<iostream>
#include<cstring>
#include<stdio.h>
#include<vector>
#include<string>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
typedef int LL; const int maxn =1e3+;
const int maxm = 1e5+;
const LL INF =0x3f3f3f3f;
struct Edge{
int from,to;
LL val;
};
struct HeapNode{
LL d; //费用或路径
int u;
bool operator < (const HeapNode & rhs) const{return d > rhs.d;}
};
struct Dijstra{
int n,m;
vector<Edge> edges;
vector<int> G[maxn];
bool used[maxn];
LL d[maxn];
int p[maxn]; void init(int n){
this->n = n;
for(int i=;i<=n;++i) G[i].clear();
edges.clear();
memset(used,,sizeof(used));
} void Addedge(int from,int to ,LL dist){
edges.push_back((Edge){from,to,dist});
m = edges.size();
G[from].push_back(m-);
} void dijkstra(int s){
priority_queue<HeapNode> Q;
for(int i=;i<=n;++i) d[i]=INF;
d[s]=;
Q.push((HeapNode){,s});
while(!Q.empty()){
HeapNode x =Q.top();Q.pop();
int u =x.u;
if(used[u])
continue;
used[u]= true;
for(int i=;i<G[u].size();++i){
Edge & e = edges[G[u][i]];
if(d[e.to] > d[u] + e.val){
d[e.to] = d[u] +e.val;
p[e.to] = G[u][i];
Q.push((HeapNode){d[e.to],e.to});
}
}
}
}
}G; const int MAXN=;//点数的最大值
const int MAXM=;//边数的最大值 struct Node{
int from,to,next;
int cap;
}; struct SAP_MaxFlow{
int n,m; //点数和边数
int tol;
int head[MAXN];
int dep[MAXN];
int gap[MAXN];//gap[x]=y :说明残留网络中dep[i]==x的个数为y
Node edge[MAXM]; void init(int N){
this->n = N;
this->tol=;
memset(head,-,sizeof(head));
} void AddEdge(int u,int v,int w){
edge[tol].from=u;edge[tol].to=v;edge[tol].cap=w;edge[tol].next=head[u];head[u]=tol++;
edge[tol].from=v;edge[tol].to=u;edge[tol].cap=;edge[tol].next=head[v];head[v]=tol++;
} void BFS(int start,int end)
{
memset(dep,-,sizeof(dep));
memset(gap,,sizeof(gap));
gap[]=;
int que[MAXN];
int front,rear;
front=rear=;
dep[end]=;
que[rear++]=end;
while(front!=rear){
int u=que[front++];
if(front==MAXN)front=;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].to;
if(dep[v]!=-)continue;
que[rear++]=v;
if(rear==MAXN)rear=;
dep[v]=dep[u]+;
++gap[dep[v]];
}
}
}
int SAP(int start,int end)
{
int res=;
BFS(start,end);
int cur[MAXN];
int S[MAXN];
int top=;
memcpy(cur,head,sizeof(head));
int u=start;
int i;
while(dep[start]<n){
if(u==end){
int temp=INF;
int inser;
for(i=;i<top;i++)
if(temp>edge[S[i]].cap){
temp=edge[S[i]].cap;
inser=i;
}
for(i=;i<top;i++){
edge[S[i]].cap-=temp;
edge[S[i]^].cap+=temp;
}
res+=temp;
top=inser;
u=edge[S[top]].from;
}
if(u!=end&&gap[dep[u]-]==)//出现断层,无增广路
break;
for(i=cur[u];i!=-;i=edge[i].next)
if(edge[i].cap!=&&dep[u]==dep[edge[i].to]+)
break;
if(i!=-){
cur[u]=i;
S[top++]=i;
u=edge[i].to;
}
else{
int min=n;
for(i=head[u];i!=-;i=edge[i].next){
if(edge[i].cap==)continue;
if(min>dep[edge[i].to]){
min=dep[edge[i].to];
cur[u]=i;
}
}
--gap[dep[u]];
dep[u]=min+;
++gap[dep[u]];
if(u!=start)u=edge[S[--top]].from;
}
}
return res;
}
}F; //#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int N,M,s,t,u,v,T;
LL tmp,b;
scanf("%d",&T);
while(T--){
scanf("%d%d",&N,&M);
G.init(N);F.init(N);
for(int i=;i<=M;++i){
scanf("%d%d%d",&u,&v,&tmp);
G.Addedge(u,v,tmp);
}
scanf("%d%d",&s,&t);
G.dijkstra(s);
for(int i=;i<M;++i){
Edge e = G.edges[i];
if(G.d[e.from]+e.val==G.d[e.to])
F.AddEdge(e.from,e.to,);
}
printf("%d\n",F.SAP(s,t));
}
return ;
}
HDU 3416 Marriage Match IV (Dijkstra+最大流)的更多相关文章
- hdu 3416 Marriage Match IV (最短路+最大流)
hdu 3416 Marriage Match IV Description Do not sincere non-interference. Like that show, now starvae ...
- HDU 3416 Marriage Match IV (最短路径,网络流,最大流)
HDU 3416 Marriage Match IV (最短路径,网络流,最大流) Description Do not sincere non-interference. Like that sho ...
- HDU 3416 Marriage Match IV (求最短路的条数,最大流)
Marriage Match IV 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/Q Description Do not si ...
- HDU 3416 Marriage Match IV 【最短路】(记录路径)+【最大流】
<题目链接> 题目大意: 给你一张图,问你其中没有边重合的最短路径有多少条. 解题分析: 建图的时候记得存一下链式后向边,方便寻找最短路径,然后用Dijkstra或者SPFA跑一遍最短路, ...
- hdu 3416 Marriage Match IV 【 最短路 最大流 】
求边不可重复的最短路条数 先从起点到终点用一次dijkstra,再从终点到起点用一次dijkstra,来判断一条边是否在最短路上 如果在,就将这条边的两个端点连起来,容量为1 再跑一下dinic(), ...
- HDU 3416 Marriage Match IV (最短路建图+最大流)
(点击此处查看原题) 题目分析 题意:给出一个有n个结点,m条单向边的有向图,问从源点s到汇点t的不重合的最短路有多少条,所谓不重复,意思是任意两条最短路径都不共用一条边,而且任意两点之间的边只会用一 ...
- HDU 3416 Marriage Match IV (最短路径&&最大流)
/*题意: 有 n 个城市,知道了起点和终点,有 m 条有向边,问从起点到终点的最短路一共有多少条.这是一个有向图,建边的时候要注意!!解题思路:这题的关键就是找到哪些边可以构成最短路,其实之前做最短 ...
- HDU 3416 Marriage Match IV dij+dinic
题意:给你n个点,m条边的图(有向图,记住一定是有向图),给定起点和终点,问你从起点到终点有几条不同的最短路 分析:不同的最短路,即一条边也不能相同,然后刚开始我的想法是找到一条删一条,然后光荣TLE ...
- HDU 3416 Marriage Match IV
最短路+最大流 #include<cstdio> #include<cstring> #include<string> #include<cmath> ...
随机推荐
- ChemDraw中化学信息怎么通过Excel搜索
用户可以通过ChemDraw for Excel插件功能在Office Excel中建立ChemOffice菜单将ChemOffice和Excel结合使用,使用电子表格的最大优势之一就是可以清晰查看并 ...
- VS2008 对话框编辑器“即时预览”
之前在VS2008中利用资源编辑器修改完对话框资源后,总是重新编译一下,然后Ctrl+F5运行来预览修改的效果,不断修改,不断编译,导致很费时,效率低下. 今天,发现了一个很好用的功能“Test Di ...
- 剑指 offer set 28 实现 Singleton 模式
singleton 模式又称单例模式, 它能够保证只有一个实例. 在多线程环境中, 需要小心设计, 防止两个线程同时创建两个实例. 解法 1. 能在多线程中工作但效率不高 public sealed ...
- px像素单位与IOS像素单位的换算
本文转载至 http://blog.csdn.net/fanyuna/article/details/24032663 30px转成磅为单位=22磅=二号 磅=(像素/96)*72 =(30/96) ...
- 非IE图片上传预览
$("#uploadFiles").change(function (e) { if (e.target.files) { ...
- [Android Tips] 17. 查看 APK 签名信息
从 APK 文件中获取签名信息 方法一 $ keytool -list -printcert -jarfile <path of APK> 方法二 解压 APK 文件,释放出 META-I ...
- Angular2+学习第1篇 简介
历史: Angular是Google推出的Web前端开发框架,从12年发布起就受到了强烈的关注,他首次提出了双向绑定的概念,让人耳目一新. Angular 2特性 就在2016年9月中旬,时隔4年,G ...
- ubuntu中vi编辑器键盘错乱的问题
Ubuntu安装完成后vi编辑器键盘不能正常使用,使用下面方法解决: 编辑文件/etc/vim/vimrc.tiny,将“compatible”改成“nocompatible”非兼容模式: 并添加一句 ...
- CentOS源码安装QT
在VirtualBox上的CentOS下安装qt-everywhere-opensource-src-4.8.4 ,执行 ./confiure时失败,失败信息为:Basic XLib function ...
- URI 、URL 和 URN
URI URI 是 Uniform Resource Identifier 的缩写. Uniform 统一不同类型的资源.比如 txt.mp3.jpeg 等不同的类型的资源都可以使用 URI 来标识 ...