tensorflow每个变量封装了一个程序,需要通过sess.run 进行调用

接下来我们使用一下使用mnist数据,这是一个手写图像的数据,训练集是55000*28*28, 测试集10000* 28*28

第一步:导入数据

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
# 导入数据
mnist = input_data.read_data_sets('data/', one_hot=True) print (" tpye of 'mnist' is %s" % (type(mnist)))
print (" number of trian data is %d" % (mnist.train.num_examples))
print (" number of test data is %d" % (mnist.test.num_examples)) training = mnist.train.images
traininglable = mnist.train.labels
testing = mnist.test.images
testinglabel = mnist.test.labels

第二步:初识化变量

#初始化x和y
x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float', [None, 10])
# 初始化W和b
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10])) sess = tf.Session()

第三步: 构造初始化函数

# 构造多分类方程
actv = tf.nn.softmax(tf.matmul(x, W) + b)
# 构造代价函数y*log(y1), y1表示的是预测值
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(actv), reduction_indices=1))
#训练模型 learning_rate = 0.01
#优化模型,使得cost最小化
optm = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # 预测结果的最大值索引与真实值的索引进行比对, tf.argmax( , 1) #找出一行中的最大值的索引
pred = tf.equal(tf.argmax(actv, 1), tf.argmax(y, 1))
# 计算正确率, tf.cast 把布尔值转换为数字形式
accr = tf.reduce_mean(tf.cast(pred, 'float'))

第四步:迭代优化参数

init = tf.global_variables_initializer()

# 训练次数
train_epoches = 50
# 每次抽取样本数
batch_size = 100
# 每5次循环打印一次结果
display_step = 5
sess = tf.Session()
sess.run(init) for train_epoch in range(train_epoches):
avg_cost = 0
# 每次选取100个数据,循环的次数
num_batch = int(mnist.train.num_examples/batch_size)
for i in range(num_batch):
# 抽取数据
bacth_x, bacth_y = mnist.train.next_batch(batch_size)
# 进行cost优化
sess.run(optm, feed_dict={x:bacth_x, y:bacth_y})
# 加上cost的值
feeds = {x:bacth_x, y:bacth_y}
avg_cost += sess.run(cost, feed_dict=feeds)/num_batch
# 每5次打印一次结果
if train_epoch % display_step == 0:
feeds_train = {x:bacth_x, y:bacth_y}
feed_test = {x:mnist.test.images, y:mnist.test.labels}
# 计算训练集的准确率, feed_dict的参数
train_acc = sess.run(accr, feed_dict=feeds_train)
# 计算测试集的准确率
test_acc = sess.run(accr, feed_dict=feed_test)
print("Epoch: %03d/%03d cost: %.9f train_acc: %.3f test_acc: %.3f"
% (train_epoch, train_epoches, avg_cost, train_acc, test_acc))

跟我学算法-tensorflow 实现logistics 回归的更多相关文章

  1. 跟我学算法- tensorflow 实现RNN操作

    对一张图片实现rnn操作,主要是通过先得到一个整体,然后进行切分,得到的最后input结果输出*_w[‘out’] + _b['out']  = 最终输出结果 第一步: 数据载入 import ten ...

  2. 跟我学算法- tensorflow VGG模型进行测试

    我们使用的VGG模型是别人已经训练好的一个19层的参数所做的一个模型 第一步:定义卷积分部操作函数 mport scipy.io import numpy as np import os import ...

  3. 跟我学算法-tensorflow 实现卷积神经网络附带保存和读取

    这里的话就不多说明了,因为上上一个博客已经说明了 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt ...

  4. 跟我学算法- tensorflow模型的保存与读取 tf.train.Saver()

    save =  tf.train.Saver() 通过save. save() 实现数据的加载 通过save.restore() 实现数据的导出 第一步: 数据的载入 import tensorflo ...

  5. 跟我学算法-tensorflow 实现卷积神经网络

    我们采用的卷积神经网络是两层卷积层,两层池化层和两层全连接层 我们使用的数据是mnist数据,数据训练集的数据是50000*28*28*1 因为是黑白照片,所以通道数是1 第一次卷积采用64个filt ...

  6. 跟我学算法-tensorflow 实现神经网络

    神经网络主要是存在一个前向传播的过程,我们的目的也是使得代价函数值最小化 采用的数据是minist数据,训练集为50000*28*28 测试集为10000*28*28 lable 为50000*10, ...

  7. 跟我学算法-tensorflow 实现线性拟合

    TensorFlow™ 是一个开放源代码软件库,用于进行高性能数值计算.借助其灵活的架构,用户可以轻松地将计算工作部署到多种平台(CPU.GPU.TPU)和设备(桌面设备.服务器集群.移动设备.边缘设 ...

  8. 跟我学算法- tensorflow 卷积神经网络训练验证码

    使用captcha.image.Image 生成随机验证码,随机生成的验证码为0到9的数字,验证码有4位数字组成,这是一个自己生成验证码,自己不断训练的模型 使用三层卷积层,三层池化层,二层全连接层来 ...

  9. logistics回归简单应用——梯度下降,梯度上升,牛顿算法(一)

    警告:本文为小白入门学习笔记 由于之前写过详细的过程,所以接下来就简单描述,主要写实现中遇到的问题. 数据集是关于80人两门成绩来区分能否入学: 数据集: http://openclassroom.s ...

随机推荐

  1. 2D game engine essentials [to be continued...]

    All 2D Game Engines/Frameworks are trying to solve the same problem(s). Languages don't matter- they ...

  2. absolute的left和right的妙用

    之前做了一个自定义鼠标右键的布局,做的过程中遇到了一个很有趣的问题,之前一直没有注意到. 目标样式如下: 期初并不知道文字内容需要随机,所以写的时候写“死”了. 所有的内容都是按照设计的四个文字走的, ...

  3. 线性回归 Linear regression(3) 线性回归的概率解释

    这篇博客从一种方式推导了Linear regression 线性回归的概率解释,内容来自Standford公开课machine learning中Andrew老师的讲解. 线性回归的概率解释 在Lin ...

  4. canvas globalCompositeOperation

      source-over 默认,相交部分由后绘制图形的填充(颜色,渐变,纹理)覆盖source-in 只绘制相交部分,由后绘制图形的填充覆盖,其余部分透明 source-out 只绘制后绘制图形不相 ...

  5. POJ1741 Tree + BZOJ1468 Tree 【点分治】

    POJ1741 Tree + BZOJ1468 Tree Description Give a tree with n vertices,each edge has a length(positive ...

  6. 实现一个 WPF 版本的 ConnectedAnimation

    Windows 10 的创造者更新为开发者们带来了 Connected Animation 连接动画,这也是 Fluent Design System 的一部分.它的视觉引导性很强,用户能够在它的帮助 ...

  7. UWP 中的 LaunchUriAsync,使用默认浏览器或其他应用打开链接

    古老的 Win32 应用启动其他程序太过方便,以至于一部分开发者都已经不记得 Windows 能通过关联协议的方式通过统一资源定位符(URI)来启动应用程序了. 转到 UWP 后,使用 URI 启动应 ...

  8. 如何向整个 Git 仓库补提交一个文件

    微软在 Reference Source 里开放了 .Net Framework 多个版本的源码.为了更方便地阅读这些源码,我们把每一个版本都下载下来后按顺序提交到 git 仓库中. 但是!!!居然忘 ...

  9. 洛谷P1309 瑞士轮

    传送门 题目大意: 2*n个人,有初始的比赛分数和实力值. 每次比赛前总分从大到小排序,总分相同编号小的排在前面. 每次比赛是1和2比,3和4比,5和6比. 实力值大的获胜得1分. 每次比赛前排序确定 ...

  10. python 之 list,tuple,dict,set

    基本类型,  其中set好像提到的很少 list : []  根据字面, 是一个列表,  所以有序, 可以通过序号方位 tuple: ()  是不变的list, 通过序号访问 dict: {},  字 ...