题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265

题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因子中含有p的q次方.然后让你求题目第一行给你的信息.

首先理一下思路.

第一步,我们需要算题目中要求的公式(第一行),首先,他是一个积性函数,所以我们先将题目中的第一行的式子命名为F(n).对于F(n),我们可以分着求他的每一个因子的解,然后最终将这一写乘起来就可以了.

F(n) = F(p1^q1)*F(p2^q2)........*F(pn^qn).这是积性函数的一个性质.

(积性函数的介绍:https://baike.baidu.com/item/%E7%A7%AF%E6%80%A7%E5%87%BD%E6%95%B0/8354949?fr=aladdin)

第二步,我们开始化简这个式子.中间会运用到 欧拉函数的性质.

(欧拉函数的介绍:https://baike.baidu.com/item/%E6%AC%A7%E6%8B%89%E5%87%BD%E6%95%B0)

第一步,因为题目中给定的因数都是大于1的,所以需要对1单独讨论,然后到了第三行,利用欧拉函数的一个性质,

当f(x)中,x为 质数p的k次幂的时候,f(x)=(p-1)*p^(k-1).

然后其他顺着推下来就可以了.

最后就是将所有因子算出来的结果相乘就可以了(注意取模的位置).

AC代码:

 #include<iostream>
#include<cmath>
#include<string>
#include<algorithm>
#include<cstring>
#include<stdio.h>
using namespace std;
# define ll long long
# define inf 0x3f3f3f3f
const int maxn =+;
# define ll long long
# define mod
struct node
{
ll x,y;
} q[maxn];
ll quickpow(ll t1,ll t2)
{
if(t2==)return ;
t2--;
ll ans=t1;
while(t2)
{
if(t2&)ans=ans*t1%mod;
t1=t1*t1%mod;
t2>>=;
}
return ans%mod;
}
int main()
{
int T;
cin>>T;
while(T--)
{
int n;
cin>>n;
for(int i=; i<=n; i++)
{
cin>>q[i].x>>q[i].y;
}
ll ans=;
for(int i=; i<=n; i++)
{
ll temp=quickpow(q[i].x,q[i].y-);
ans=ans*temp%mod*(q[i].x+(q[i].x-)*q[i].y%mod+mod)%mod;
}
cout<<ans<<endl;
}
return ;
}

Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)的更多相关文章

  1. 【模板】埃拉托色尼筛法 && 欧拉筛法 && 积性函数

    埃拉托色尼筛法 朴素算法 1 vis[1]=1; 2 for (int i=2;i<=n;i++) 3 if (!vis[i]) 4 { 5 pri[++tot]=i; 6 for (int j ...

  2. 积性函数初步(欧拉$\varphi$函数)

    updata on 2020.4.3 添加了欧拉\(\varphi\)函数为积性函数的证明和它的计算方式 1.积性函数 设\(f(n)\)为定义在正整数上的函数,若\(f(1)=1\),且对于任意正整 ...

  3. [模板] 积性函数 && 线性筛

    积性函数 数论函数指的是定义在正整数集上的实或复函数. 积性函数指的是当 \((a,b)=1\) 时, 满足 \(f(a*b)=f(a)*f(b)\) 的数论函数. 完全积性函数指的是在任何情况下, ...

  4. POJ 2480 Longge&#39;s problem 积性函数

    题目来源:id=2480" style="color:rgb(106,57,6); text-decoration:none">POJ 2480 Longge's ...

  5. 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和

    只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...

  6. 51nod1040 最大公约数之和,欧拉函数或积性函数

    1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 看起来很简单 ...

  7. POJ 2480 Longge's problem (积性函数,欧拉函数)

    题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...

  8. hdu2421-Deciphering Password-(欧拉筛+唯一分解定理+积性函数+立方求和公式)

    Deciphering Password Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  9. POJ_2480 Longge's problem【积性函数+欧拉函数的理解与应用】

    题目: Longge is good at mathematics and he likes to think about hard mathematical problems which will ...

随机推荐

  1. Mysql的表名/字段名/字段值是否区分大小写

    1.MySQL默认情况下是否区分大小写,使用show Variables like '%table_names'查看lower_case_table_names的值,0代表区分,1代表不区分. 2.m ...

  2. Mybatis 中 sql 语句的占位符 #{} 和 ${}

    #{} 表示一个占位符号,通过 #{} 可以实现 preparedStatement 向占位符中设置值,自动进行 java 类型和 jdbc 类型转换.#{} 可以有效防止   sql注入. #{}  ...

  3. MVC、MVP、MVVM 模式

    一.前言 做客户端开发.前端开发对MVC.MVP.MVVM这些名词不了解也应该大致听过,都是为了解决图形界面应用程序复杂性管理问题而产生的应用架构模式.网上很多文章关于这方面的讨论比较杂乱,各种MV* ...

  4. dom对象转成jquery对象时候 变成数组 jquery转成dom时候 取数组第一个

  5. solr源码分析之solrclound

    一.简介 SolrCloud是Solr4.0版本以后基于Solr和Zookeeper的分布式搜索方案.SolrCloud是Solr的基于Zookeeper一种部署方式.Solr可以以多种方式部署,例如 ...

  6. 【明哥报错簿】之【HTTP Status 500 - Servlet.init() for servlet mvc-dispatcher threw exception】

    报错:java.lang.NoClassDefFoundError: /factory/config/EmbeddedValueResolver spring或者jdk的问题,解决办法:spring3 ...

  7. ubuntu16.04上安装配置DHCP服务的详细过程

    DHCP服务器是为客户端机器分配IP地址的,所有分配的IP地址都保存在DHCP服务器的数据库中.为了在子网中实现DHCP分配IP地址,需要在目标主机上安装配置DHCP服务 1. 安装DHCP服务 安装 ...

  8. P1065 作业调度方案

    题目描述 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每个工序称为一个操作,我们用记号j−k表示一个 ...

  9. (转)修改Android 的framework层后,重新编译

    1.下面方法适合真机:下载android源码,然后编译你修改的framwork的代码,会生成framework.jar,然后push到system/framework目录下,重启机器!ok 2,下面方 ...

  10. PHP 多线程采集

    function curl_multi($urls) { if (!is_array($urls) or count($urls) == 0) { return false; } $num=count ...