bzoj

luogu

sol

首先很显然的,答案等于1到n的任意一条路径的异或和与若干个环的异或和的异或和。

因为图是联通的,那么就可以从一个点走到任意一个想要走到的环上,走完这个环后原路返回,那么中间的路径刚好抵消,所以这样是成立的。

现在需要把所有环的异或和丢到一个线性基里面。在dfs的生成树上的每一条非树边(返祖边)都对应了一个环,直接丢进去就可以了。

code

#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
ll gi()
{
ll x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
struct xxj{
ll p[70];
void insert(ll x)
{
for (int j=63;j>=0;--j)
{
if (!(x>>j)) continue;
if (!p[j]) {p[j]=x;return;}
x^=p[j];
}
}
ll query(ll x)
{
for (int j=63;j>=0;--j)
x=max(x,x^p[j]);
return x;
}
}S;
const int N = 1e5+5;
int n,m,to[N<<1],nxt[N<<1],head[N],cnt,vis[N];ll val[N<<1],dis[N];
void link(int u,int v,ll w){to[++cnt]=v;nxt[cnt]=head[u];val[cnt]=w;head[u]=cnt;}
void dfs(int u)
{
for (int e=head[u];e;e=nxt[e])
if (!vis[to[e]])
dis[to[e]]=dis[u]^val[e],vis[to[e]]=1,dfs(to[e]);
else S.insert(dis[to[e]]^dis[u]^val[e]);
}
int main()
{
n=gi();m=gi();
for (int i=1;i<=m;++i)
{
int u=gi(),v=gi();ll w=gi();
link(u,v,w);link(v,u,w);
}
dfs(1);printf("%lld\n",S.query(dis[n]));
return 0;
}

[BZOJ2115][WC2011]最大XOR和路径的更多相关文章

  1. 洛谷 P4151 [WC2011]最大XOR和路径 解题报告

    P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...

  2. [WC2011]最大XOR和路径 线性基

    [WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...

  3. P4151 [WC2011]最大XOR和路径

    P4151 [WC2011]最大XOR和路径 一道妙极了的题. 首先直接从1走到n 然后现在图上有很多环 所以可以在走到n之后走到环上一个点,再走一遍环,再原路返回.这样就会xor上环的权值. 然后只 ...

  4. [WC2011]最大XOR和路径(线性基)

    P4151 [WC2011]最大XOR和路径 题目描述 XOR(异或)是一种二元逻辑运算,其运算结果当且仅当两个输入的布尔值不相等时才为真,否则为假. XOR 运算的真值表如下( 1 表示真, 0 表 ...

  5. 题解-[WC2011]最大XOR和路径

    [WC2011]最大XOR和路径 给一个 \(n\) 个点 \(m\) 条边(权值为 \(d_i\))的无向有权图,可能有重边和子环.可以多次经过一条边,求 \(1\to n\) 的路径的最大边权异或 ...

  6. 洛谷P4151 [WC2011] 最大XOR和路径 [线性基,DFS]

    题目传送门 最大XOR和路径 格式难调,题面就不放了. 分析: 一道需要深刻理解线性基的题目. 好久没打过线性基的题了,一开始看到这题还是有点蒙逼的,想了几种方法全被否定了.还是看了大佬的题解才会做的 ...

  7. luoguP4151 [WC2011]最大XOR和路径

    题意 这题有点神啊. 首先考虑注意这句话: 路径可以重复经过某些点或边,当一条边在路径中出现了多次时,其权值在计算 XOR 和时也要被计算相应多的次数 也就是说如果出现下面的情况: 我们可以通过异或上 ...

  8. 洛谷 P4151 BZOJ 2115 [WC2011]最大XOR和路径

    //bzoj上的题面太丑了,导致VJ的题面也很丑,于是这题用洛谷的题面 题面描述 XOR(异或)是一种二元逻辑运算,其运算结果当且仅当两个输入的布尔值不相等时才为真,否则为假. XOR 运算的真值表如 ...

  9. [WC2011]最大XOR和路径(贪心+线性基)

    题目大意:给一张无向图,求一条1-n的路径,是路径边权的异或和最小. 题解 这道题的思路很妙,首先我们可以随便找出一条从1到n的路径来,然后我们可以选一些环. 其实不管这个环和这条路径有怎样的关系,我 ...

随机推荐

  1. synchornized实现原理

    synchronized是基于Monitor来实现同步的. Monitor 的工作机理: 线程进入同步方法中. 为了继续执行临界区代码,线程必须获取 Monitor 锁.如果获取锁成功,将成为该监视者 ...

  2. Jenkins的安装和使用

    1.可以参考W3C----https://www.w3cschool.cn/jenkins/jenkins-5h3228n2.html 两种方式安装Jenkins a.安装包 b.Jenkins.wa ...

  3. 理解django的多对多ManyToManyField

    转自:http://luozhaoyu.iteye.com/blog/1510635 对于第一次碰到django这样类activerecord的ORM,初学者可能比较疑惑的是ManyToManyFie ...

  4. 原生javascript-日期年,月,日联动选择

    在线例子:http://lgy.1zwq.com/dateSwitch/ 月份的判定,由于涉及到过多了判定条件,如果用if else会大大降低性能,建议用switch 语法 getDays:funct ...

  5. 普通用户启动redis

    重庆231 Redis 服务器 redis用户启动 复制 /etc/init.d/redis 启动脚本到 /redisdata/redis3.2下面,修改内容 [root@localhost ~]# ...

  6. 二十四、DBMS_SQL

    1.概述 1) 在整个程序的设计过程中,对游标的操作切不可有省略的部分,一旦省略其中某一步骤,则会程序编译过程既告失败,如在程序结尾处未对改游标进行关闭操作,则在再次调用过程时会出现错误. 2) db ...

  7. zoj3656

    题解: 按照位展开,然后一位一位判断 注意判断给出数据是否有问题 代码: #include<cstdio> #include<cmath> #include<algori ...

  8. LeetCode OJ:Range Sum Query 2D - Immutable(区域和2D版本)

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  9. L156

    China has specified the definition and diagnosis standard for internet addiction in its latest adole ...

  10. Linux系统在启动过程中启动级别发生错误的解决办法

    一.系统启动级别一共有六个: 0:系统停机模式,系统不可以正常启动 1:单用户模式, root权限,用于系统的维护,禁止远程登陆 2:多用户模式,没有NFS网络支持 3:完整的多用户文本模式,有NFS ...