题意

PDF

分析

如果要求是某行某列没有石子很好算,就一个组合数。

然后要求某行某列有,就用容斥原理就行了。

时间复杂度\(O(k^2 + 16T)\)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<ctime>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read()
{
    rg T data=0;
    rg int w=1;
    rg char ch=getchar();
    while(!isdigit(ch))
    {
        if(ch=='-')
            w=-1;
        ch=getchar();
    }
    while(isdigit(ch))
    {
        data=data*10+ch-'0';
        ch=getchar();
    }
    return data*w;
}
template<class T>T read(T&x)
{
    return x=read<T>();
}
using namespace std;
typedef long long ll;

co int K=500,mod=1e6+7;
int C[K+10][K+10];

int add(int x,int y)
{
    x+=y;
    return x>=mod?x-mod:x;
}

int sub(int x,int y)
{
    x-=y;
    return x<0?x+mod:x;
}

int main()
{
//  freopen(".in","r",stdin);
//  freopen(".out","w",stdout);
    C[0][0]=1;
    for(int i=0;i<=K;++i)
    {
        C[i][0]=C[i][i]=1;
        for(int j=1;j<i;++j)
            C[i][j]=add(C[i-1][j],C[i-1][j-1]);
    }
    int T=read<int>();
    for(int kase=1;kase<=T;++kase)
    {
        int n,m,k,sum=0;
        read(n);read(m);read(k);
        for(int s=0;s<16;++s)
        {
            int b=0,r=n,c=m;
            if(s&1)
                r--,b++;
            if(s&2)
                r--,b++;
            if(s&4)
                c--,b++;
            if(s&8)
                c--,b++;
            if(b&1)
                sum=sub(sum,C[r*c][k]);
            else
                sum=add(sum,C[r*c][k]);
        }
        printf("Case %d: %d\n",kase,sum);
    }
    return 0;
}

UVA11806 Cheerleaders的更多相关文章

  1. 【UVA11806 Cheerleaders】 题解

    题目链接:https://www.luogu.org/problemnew/show/UVA11806 容斥原理+组合数 正着找合♂fa的不好找,那就用总方案数-不合♂fa的 #include < ...

  2. UVA-11806 Cheerleaders 计数问题 容斥定理

    题目链接:https://cn.vjudge.net/problem/UVA-11806 题意 在一个mn的矩形网格里放k个石子,问有多少方法. 每个格子只能放一个石头,每个石头都要放,且第一行.最后 ...

  3. UVa11806 Cheerleaders(容斥原理)

    11806 - Cheerleaders Time limit: 2.000 seconds C Cheerleaders In most professional sporting events, ...

  4. UVA11806 Cheerleaders (容斥)

    题目链接 Solution 可以考虑到总方案即为 \(C_{nm}^k\) . 考虑到要求的是边缘都必须至少有 \(1\) ,所以考虑不合法的. 第一行和最后一行没有的方案即为 \(C_{(n-1)m ...

  5. uva 11806 Cheerleaders

    // uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...

  6. UVA 11806 Cheerleaders dp+容斥

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  7. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  8. 【递推】【组合数】【容斥原理】UVA - 11806 - Cheerleaders

    http://www.cnblogs.com/khbcsu/p/4245943.html 本题如果直接枚举的话难度很大并且会无从下手.那么我们是否可以采取逆向思考的方法来解决问题呢?我们可以用总的情况 ...

  9. Cheerleaders UVA - 11806 计数问题

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

随机推荐

  1. oom_killer

    Limited Memory 今天在虚拟机里面用Word处理文档的时候,突然硬盘灯一阵狂闪,然后虚拟机就一起消失了. 这种事情屡见不鲜,很明显是Linux内核把占用最多内存的程序(这次是Virtual ...

  2. (2) iOS开发之UI处理-UILabel篇

    我们经常要根据内容去动态计算控件的高度,比如一个UILabel控件,常常要显示多行内容,并且计算出总高度,如果每个UILabel要多行显示,都要写这么一段代码是非常痛苦的,看代码如下:     我想大 ...

  3. Srping整合EhCache

    引入的Jar包如下:

  4. hdu4678 Mine 规律或者博弈。(博弈的sg函数不懂我是找的规律)

    链接:题意就是告诉你一个扫雷图里面每个雷的位置,有两个人,每个人都知道雷的确切位置,每个人一次可以点一部,问你谁能赢. 链接:http://acm.hdu.edu.cn/showproblem.php ...

  5. pip 使用总结

    pip的安装: Windows Python2.7 以上的版本均自带pip,安装的时候记得勾选对应的选项即可. 安装easy_install, 通过easy_install pip 下载[easy_s ...

  6. office套件

    一.PDF模块 使用PyPDF2模块 pip install PyPDF2 1.1 从PDF读取数据 直接读取,并打印出来.但是这种打印存在一个问题,不能中文字符 import PyPDF2 impo ...

  7. 【Wannafly挑战赛9-A】找一找

    链接:https://www.nowcoder.net/acm/contest/71/A 题目描述 给定n个正整数,请找出其中有多少个数x满足:在这n个数中存在数y=kx,其中k为大于1的整数 输入描 ...

  8. Python 使用 os.fork() 创建子进程

    Linux 操作系统提供了一个 fork() 函数用来创建子进程,这个函数很特殊,调用一次,返回两次,因为操作系统是将当前的进程(父进程)复制了一份(子进程),然后分别在父进程和子进程内返回.子进程永 ...

  9. [置顶] 云端TensorFlow读取数据IO的高效方式

    低效的IO方式 最近通过观察PAI平台上TensoFlow用户的运行情况,发现大家在数据IO这方面还是有比较大的困惑,主要是因为很多同学没有很好的理解本地执行TensorFlow代码和分布式云端执行T ...

  10. 向量点积(Dot Product),向量叉积(Cross Product)

    参考的是<游戏和图形学的3D数学入门教程>,非常不错的书,推荐阅读,老外很喜欢把一个东西解释的很详细. 1.向量点积(Dot Product) 向量点积的结果有什么意义?事实上,向量的点积 ...