Computational Geometry Template_Polygon
#include <stdlib.h>
#include <math.h>
#include <iostream> #define MAXN 1000
#define offset 10000
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
#define _sign(x) ((x)>eps?1:((x)<-eps?2:0)) struct point{ double x, y; };
struct line{ point a, b; }; double xmult(point p1, point p2, point p0){
return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y);
} //判定凸多边形,顶点按顺时针或逆时针给出,允许相邻边共线
bool is_convex(int n, point* p){
int i, s[3] = { 1, 1, 1 };
for (i = 0; i < n && s[1] | s[2]; i++)
s[_sign(xmult(p[(i + 1)%n], p[(i + 2)%n], p[i]))] = 0;
return s[1] | s[2];
} //判定凸多边形,顶点按顺时针或逆时针给出,不允许相邻边共线
bool is_convex_v2(int n, point* p){
int i, s[3] = { 1, 1, 1 };
for (i = 0; i < n && s[0] && s[1] | s[2]; i++)
s[_sign(xmult(p[(i + 1)%n], p[(i + 2)%n], p[i]))] = 0;
return s[0] && s[1] | s[2];
} //判点在凸多边形内或多边形边上,顶点按顺时针或逆时针给出
bool inside_convex(point q, int n, point* p){
int i, s[3] = { 1, 1, 1 };
for (i = 0; i < n && s[1] | s[2]; i++)
s[_sign(xmult(p[(i + 1)%n], q, p[i]))] = 0;
return s[1] | s[2];
} //判点在凸多边形内,顶点按顺时针或逆时针给出,在多边形边上返回0
bool inside_convex_v2(point q, int n, point* p){
int i, s[3] = { 1, 1, 1 };
for (i = 0; i < n && s[0] && s[1] | s[2]; i++)
s[_sign(xmult(p[(i + 1)%n], q, p[i]))] = 0;
return s[0] && s[1] | s[2];
} //判点在任意多边形内,顶点按顺时针或逆时针给出
//on_edge表示点在多边形边上时的返回值,offset为多边形坐标上限
bool inside_polygon(point q, int n, point* p, int on_edge = 1){
point q2;
int i = 0, count;
while (i < n)
for (count = i = 0, q2.x = rand() + offset, q2.y = rand() + offset; i < n; i++)
if (zero(xmult(q, p[i], p[(i + 1)%n])) && (p[i].x - q.x)*(p[(i + 1)%n].x - q.x) < eps && (p[i].y - q.y)*(p[(i + 1)%n].y - q.y) < eps)
return on_edge;
else if (zero(xmult(q, q2, p[i])))
break;
else if (xmult(q, p[i], q2)*xmult(q, p[(i + 1)%n], q2) < -eps && xmult(p[i], q, p[(i + 1)%n])*xmult(p[i], q2, p[(i + 1)%n]) < -eps)
count++;
return count & 1;
} inline bool opposite_side(point p1, point p2, point l1, point l2){
return xmult(l1, p1, l2)*xmult(l1, p2, l2) < -eps;
} inline bool dot_online_in(point p, point l1, point l2){
return zero(xmult(p, l1, l2)) && (l1.x - p.x)*(l2.x - p.x) < eps && (l1.y - p.y)*(l2.y - p.y) < eps;
} //判线段在任意多边形内,顶点按顺时针或逆时针给出,与边界相交返回1
bool inside_polygon(point l1, point l2, int n, point* p){
point t[MAXN], tt;
int i, j, k = 0;
if (!inside_polygon(l1, n, p) || !inside_polygon(l2, n, p))
return 0;
for (i = 0; i < n; i++)
if (opposite_side(l1, l2, p[i], p[(i + 1)%n]) && opposite_side(p[i], p[(i + 1)%n], l1, l2))
return 0;
else if (dot_online_in(l1, p[i], p[(i + 1)%n]))
t[k++] = l1;
else if (dot_online_in(l2, p[i], p[(i + 1)%n]))
t[k++] = l2;
else if (dot_online_in(p[i], l1, l2))
t[k++] = p[i];
for (i = 0; i < k; i++)
for (j = i + 1; j < k; j++){
tt.x = (t[i].x + t[j].x) / 2;
tt.y = (t[i].y + t[j].y) / 2;
if (!inside_polygon(tt, n, p))
return 0;
}
return 1;
} double distance(point p1, point p2)
{
return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y));
}
double disptoline(point p, point l1, point l2){
return fabs(xmult(p, l1, l2)) / distance(l1, l2);
}
int intersect_seg_circle(point c, double r, point l1, point l2){
double t1 = distance(c, l1) - r, t2 = distance(c, l2) - r;
point t = c;
if (t1<eps || t2<eps)
return t1>-eps || t2>-eps;
t.x += l1.y - l2.y;
t.y += l2.x - l1.x;
return xmult(l1, c, t)*xmult(l2, c, t) < eps && disptoline(c, l1, l2) - r < eps;
}
//判断圆是否在多边形内
bool circle_in_polygen(double r, point o, int n, point *p)
{
for (int i = 1; i < n; i++)
{
bool flag = intersect_seg_circle(o, r, p[i - 1], p[i]);
if (flag) { return false; break; }
}
return true;
} point intersection(line u, line v){
point ret = u.a;
double t = ((u.a.x - v.a.x)*(v.a.y - v.b.y) - (u.a.y - v.a.y)*(v.a.x - v.b.x))
/ ((u.a.x - u.b.x)*(v.a.y - v.b.y) - (u.a.y - u.b.y)*(v.a.x - v.b.x));
ret.x += (u.b.x - u.a.x)*t;
ret.y += (u.b.y - u.a.y)*t;
return ret;
} point barycenter(point a, point b, point c){
line u, v;
u.a.x = (a.x + b.x) / 2;
u.a.y = (a.y + b.y) / 2;
u.b = c;
v.a.x = (a.x + c.x) / 2;
v.a.y = (a.y + c.y) / 2;
v.b = b;
return intersection(u, v);
} //多边形重心
point barycenter(int n, point* p){
point ret, t;
double t1 = 0, t2;
int i;
ret.x = ret.y = 0;
for (i = 1; i<n - 1; i++)
if (fabs(t2 = xmult(p[0], p[i], p[i + 1]))>eps){
t = barycenter(p[0], p[i], p[i + 1]);
ret.x += t.x*t2;
ret.y += t.y*t2;
t1 += t2;
}
if (fabs(t1) > eps)
ret.x /= t1, ret.y /= t1;
return ret;
}
Computational Geometry Template_Polygon的更多相关文章
- Computational Geometry Template
顿时觉得神清气爽!! #include <iostream> #include <math.h> #define eps 1e-8 #define zero(x) (((x)& ...
- Computational Geometry
矩形重叠 看过某司一道笔试题:给\(n\)个矩形左下和右上坐标(不能斜放),求重叠最多处矩形个数. 这道题本身不难:可以遍历所有矩形边界组成的点,计算该点被多少矩形包围,从而选出最大值. 由此引申出一 ...
- 2D Circular Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual
1 Introduction The goal of the circular kernel is to offer to the user a large set of functionalitie ...
- 2D and 3D Linear Geometry Kernel ( Geometry Kernels) CGAL 4.13 -User Manual
1 Introduction CGAL, the Computational Geometry Algorithms Library, is written in C++ and consists o ...
- OpenSUSE下编译安装OpenFoam
在不是Ubuntu系统下安装OpenFoam,需要采用编译安装的方式.以下以OpenSuSE为例进行编译安装. 1 软件包准备 需要下载两个程序包: OpenFOAM-4.x-version-4.1. ...
- Programming Contest Problem Types
Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...
- 中国计算机学会CCF推荐国际学术会议
中国计算机学会推荐国际学术会议 (计算机系统与高性能计算) 一.A类 序号 会议简称 会议全称 出版社 网址 1 ASPLOS Architectural Support for Programmin ...
- Visulalize Boost Voronoi in OpenSceneGraph
Visulalize Boost Voronoi in OpenSceneGraph eryar@163.com Abstract. One of the important features of ...
- Visulalization Voronoi in OpenSceneGraph
Visulalization Voronoi in OpenSceneGraph eryar@163.com Abstract. In mathematics a Voronoi diagram is ...
随机推荐
- volley(4) 请求参数:data:[ { bar_remain:XX , bar_code:"XX" , bar_id: XX}], method:GET
1. 来自于WHCombineBatchFragment.java 2.部分代码 ).).).).port + Url.LABELPRINT + "?data="+strPrint ...
- LeetCode Binary Tree Maximum Path Sum 二叉树最大路径和(DFS)
题意:给一棵二叉树,要求找出任意两个节点(也可以只是一个点)的最大路径和,至少1个节点,返回路径和.(点权有负的.) 思路:DFS解决,返回值是,经过从某后代节点上来到当前节点且路径和最大的值.要注意 ...
- Using newInstance() to Instantiate a Fragment(转)
I recently came across an interesting question on StackOverflow regarding Fragment instantiation: Wh ...
- spring的声明式事务内部图
- a标签的href劫持,做判断后在跳转
$.ajax({ type: "POST", url: "/resource/logincheck", data: {id: id}, success: fun ...
- 深入了解 Oracle Flex ASM 及其优点
简介 Oracle Real Application Cluster (RAC) 是 Oracle 解决方案中的一个著名产品,用于保持业务数据的高可用性.Oracle RAC 允许在所有集群节点之间共 ...
- delete archivelog all 无法彻底删除归档日志?
最近在因归档日志暴增,使用delete archivelog all貌似无法清除所有的归档日志,到底是什么原因呢? 1.演示环境 SQL> select * from v$version whe ...
- MySQL与Oracle 差异比较之二基本语法
基本语法 编号 类别 ORACLE MYSQL 注释 1 变量的声明方式不同 li_index NUMBER := 0 DECLARE li_index INTEGER DEFAULT 0 1. my ...
- Excel的最大行数
使用Excel2007或Excel2010,在“另存为” 菜单中可以选择为“Excel 07-2003 工作薄”,从中我们可以看出,到了2007版以后,存储格式变了,简单一点从扩展名便可以看出,一个是 ...
- Golang 绘图基础- 不同的输出源
先看一个简单代码, 它执行后会产生下面的300*500的png图片文件: 代码: 1: package main 2: 3: import ( 4: "fmt" 5: " ...