cf(#div1 B. Dreamoon and Sets)(数论)
1 second
256 megabytes
standard input
standard output
Dreamoon likes to play with sets, integers and
.
is defined as the largest positive integer that divides both a and b.
Let S be a set of exactly four distinct integers greater than 0. Define S to be of rank k if and only if for all pairs of distinct elements si, sj from S,
.
Given k and n, Dreamoon wants to make up n sets of rank k using integers from 1 to m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m that makes it possible and print one possible solution.
The single line of the input contains two space separated integers n, k (1 ≤ n ≤ 10 000, 1 ≤ k ≤ 100).
On the first line print a single integer — the minimal possible m.
On each of the next n lines print four space separated integers representing the i-th set.
Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m, print any one of them.
1 1
5
1 2 3 5
2 2
22
2 4 6 22
14 18 10 16
For the first example it's easy to see that set {1, 2, 3, 4} isn't a valid set of rank 1 since
.
题意: 给你任意n,k,要你求出n组gcd(si,sj)=k的四个元素的组合.........
其实对于gcd(a,b)=k,我们只需要求出gcd(a,b)=1;然后进行gcd(a,b)*k=k;
不难发现这些数是固定不变的而且还有规律可循,即1,2,3,5 7 8 9 11 13 14 15 17 每一个段直接隔着2,段内前3个连续,后一个隔着2.....
代码:
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=;
__int64 ans[maxn][];
void work()
{
__int64 k=;
for(int i=;i<;i++)
{
ans[i][]=k++;
ans[i][]=k++;
ans[i][]=k++;
ans[i][]=++k;
k+=;
}
}
int main()
{
int n,k;
work();
while(scanf("%d%d",&n,&k)!=EOF)
{
printf("%I64d\n",ans[n-][]*k);
for(int i=;i<n;i++)
printf("%I64d %I64d %I64d %I64d\n",ans[i][]*k,ans[i][]*k,ans[i][]*k,ans[i][]*k);
}
return ;
}
cf(#div1 B. Dreamoon and Sets)(数论)的更多相关文章
- cf(#div1 A. Dreamoon and Sums)(数论)
A. Dreamoon and Sums time limit per test 1.5 seconds memory limit per test 256 megabytes input stand ...
- codeforces 477B B. Dreamoon and Sets(构造)
题目链接: B. Dreamoon and Sets time limit per test 1 second memory limit per test 256 megabytes input st ...
- Codeforces Round #272 (Div. 2) D. Dreamoon and Sets 构造
D. Dreamoon and Sets 题目连接: http://www.codeforces.com/contest/476/problem/D Description Dreamoon like ...
- CF 984C Finite or not? (数论)
CF 984C Finite or not? (数论) 给定T(T<=1e5)组数据,每组数据给出十进制表示下的整数p,q,b,求问p/q在b进制意义下是否是有限小数. 首先我们先把p/q约分一 ...
- 【CODEFORCES】 B. Dreamoon and Sets
B. Dreamoon and Sets time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces Round #272 (Div. 2) D.Dreamoon and Sets 找规律
D. Dreamoon and Sets Dreamoon likes to play with sets, integers and . is defined as the largest p ...
- D. Dreamoon and Sets(Codeforces Round #272)
D. Dreamoon and Sets time limit per test 1 second memory limit per test 256 megabytes input standard ...
- cf 450b 矩阵快速幂(数论取模 一大坑点啊)
Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...
- cf 645F Cowslip Collections 组合数学 + 简单数论
http://codeforces.com/contest/645/problem/F F. Cowslip Collections time limit per test 8 seconds mem ...
随机推荐
- VBA中的FileSystemObject对象(FSO)和文本流
对FileSystemObject一直略有耳闻,VBA爱好者常常简称为FSO对象. 在Scripting类库中有三个可以直接使用NEW关键字实例化的类,第一个就是常用的字典,第三个是FSO. 一.FS ...
- [SAP ABAP开发技术总结]EXIT-COMMAND
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- mysql密码忘记或者不知道,怎么办?
运行cmd: 输入mysql回车,如果成功,将出现MySQL提示符 > 连接权限数据库>use mysql; (>是本来就有的提示符,别忘了最后的分号) 修改改密码:> upd ...
- install Matlab2016b on Ubuntu 14.04
From Download Download the install file from Download MATLAB, Simulink, Stateflow, and Other MathWor ...
- Domion OA 日记
我现在使用的是IBM的 Lotus Dimion 8.5 以下内容是个人的浅显了解,在此记录下,已作为后续记录的翻看 第一次接触文档型数据库,确实颠覆了我对数据模型的认知,我之前一直用sql的 文档型 ...
- Scrum Meeting---Three(2015-10-27)
今日已完成任务和明日要做的任务 姓名 今日已完成任务 今日时间 明日计划完成任务 估计用时 董元财 今日我学习了Java Web,同时安装好了我的MySQL 4h 进行数据库设计以及Web项目的创建 ...
- iOS - UITextView
前言 NS_CLASS_AVAILABLE_IOS(2_0) @interface UITextView : UIScrollView <UITextInput> @available(i ...
- [转载] 一致性问题和Raft一致性算法
原文: http://daizuozhuo.github.io/consensus-algorithm/ raft 协议确实比 paxos 协议好懂太多了. 一致性问题 一致性算法是用来解决一致性问题 ...
- bootstrap学习笔记<十一>(导航条)
基础导航条.样式:class="navbar navbar-default",属性:role="navigation" <div class=" ...
- MTK Camera 开机启动流程(转载)
一.MTK平台Camera框架 MTK平台的Camera的架构见下图, 这里主要介绍kernel部分和HAL层部分. 1.Kernel 部分主要有两块: 1.1.image sensordriver, ...