plot a critical difference diagram , MATLAB code
plot a critical difference diagram , MATLAB code

建立criticaldifference函数
function cd = criticaldifference(s,labels,alpha)
%
% CRITICALDIFFERNCE - plot a critical difference diagram
%
% CRITICALDIFFERENCE(S,LABELS) produces a critical difference diagram [1]
% displaying the statistical significance (or otherwise) of a matrix of
% scores, S, achieved by a set of machine learning algorithms. Here
% LABELS is a cell array of strings giving the name of each algorithm.
%
% References
%
% [1] Demsar, J., "Statistical comparisons of classifiers over multiple
% datasets", Journal of Machine Learning Research, vol. 7, pp. 1-30,
% 2006.
% %
% File : criticaldifference.m
%
% Date : Monday 14th April 2008
%
% Author : Gavin C. Cawley
%
% Description : Sparse multinomial logistic regression using a Laplace prior.
%
% History : 14/04/2008 - v1.00
%
% Copyright : (c) Dr Gavin C. Cawley, April 2008.
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% % Thanks to Gideon Dror for supplying the extended table of critical values. if nargin < 3
alpha = 0.1;
end % convert scores into ranks
[N,k] = size(s);
[S,r] = sort(s');
idx = k*repmat(0:N-1, k, 1)' + r';
R = repmat(1:k, N, 1);
S = S'; for i=1:N
for j=1:k
index = S(i,j) == S(i,:);
R(i,index) = mean(R(i,index));
end
end r(idx) = R;
r = r'; % compute critical difference
if alpha == 0.01
qalpha = [0.000 2.576 2.913 3.113 3.255 3.364 3.452 3.526 3.590 3.646 ...
3.696 3.741 3.781 3.818 3.853 3.884 3.914 3.941 3.967 3.992 ...
4.015 4.037 4.057 4.077 4.096 4.114 4.132 4.148 4.164 4.179 ...
4.194 4.208 4.222 4.236 4.249 4.261 4.273 4.285 4.296 4.307 ...
4.318 4.329 4.339 4.349 4.359 4.368 4.378 4.387 4.395 4.404 ...
4.412 4.420 4.428 4.435 4.442 4.449 4.456 ]; elseif alpha == 0.05
qalpha = [0.000 1.960 2.344 2.569 2.728 2.850 2.948 3.031 3.102 3.164 ...
3.219 3.268 3.313 3.354 3.391 3.426 3.458 3.489 3.517 3.544 ...
3.569 3.593 3.616 3.637 3.658 3.678 3.696 3.714 3.732 3.749 ...
3.765 3.780 3.795 3.810 3.824 3.837 3.850 3.863 3.876 3.888 ...
3.899 3.911 3.922 3.933 3.943 3.954 3.964 3.973 3.983 3.992 ...
4.001 4.009 4.017 4.025 4.032 4.040 4.046]; elseif alpha == 0.1
qalpha = [0.000 1.645 2.052 2.291 2.460 2.589 2.693 2.780 2.855 2.920 ...
2.978 3.030 3.077 3.120 3.159 3.196 3.230 3.261 3.291 3.319 ...
3.346 3.371 3.394 3.417 3.439 3.459 3.479 3.498 3.516 3.533 ...
3.550 3.567 3.582 3.597 3.612 3.626 3.640 3.653 3.666 3.679 ...
3.691 3.703 3.714 3.726 3.737 3.747 3.758 3.768 3.778 3.788 ...
3.797 3.806 3.814 3.823 3.831 3.838 3.846]; else
error('alpha must be 0.01, 0.05 or 0.1');
end cd = qalpha(k)*sqrt(k*(k+1)/(6*N)); figure(1);
clf
axis off
axis([-0.2 1.2 -20 140]);
axis xy
tics = repmat((0:(k-1))/(k-1), 3, 1);
line(tics(:), repmat([100, 101, 100], 1, k), 'LineWidth', 1.5, 'Color', 'k');
%tics = repmat(((0:(k-2))/(k-1)) + 0.5/(k-1), 3, 1);
%line(tics(:), repmat([100, 101, 100], 1, k-1), 'LineWidth', 1.5, 'Color', 'k');
line([0 0 0 cd/(k-1) cd/(k-1) cd/(k-1)], [113 111 112 112 111 113], 'LineWidth', 1, 'Color', 'r');
text(0.03, 116, ['Critical Distance=' num2str(cd)], 'FontSize', 12, 'HorizontalAlignment', 'left', 'Color', 'r'); for i=1:k
text((i-1)/(k-1), 105, num2str(k-i+1), 'FontSize', 12, 'HorizontalAlignment', 'center');
end % compute average ranks
r = mean(r);
[r,idx] = sort(r); % compute statistically similar cliques
clique = repmat(r,k,1) - repmat(r',1,k);
clique(clique<0) = realmax;
clique = clique < cd; for i=k:-1:2
if all(clique(i-1,clique(i,:))==clique(i,clique(i,:)))
clique(i,:) = 0;
end
end n = sum(clique,2);
clique = clique(n>1,:);
n = size(clique,1); %yanse={'b','g','y','m','r'};
b=linspace(0,1,k);
% labels displayed on the right
for i=1:ceil(k/2)
line([(k-r(i))/(k-1) (k-r(i))/(k-1) 1], [100 100-3*(n+1)-10*i 100-3*(n+1)-10*i], 'Color', [0 0 b(i)]);
%text(1.2, 100 - 5*(n+1)- 10*i + 2, num2str(r(i)), 'FontSize', 10, 'HorizontalAlignment', 'right');
text(1.02, 100 - 3*(n+1) - 10*i, labels{idx(i)}, 'FontSize', 12, 'VerticalAlignment', 'middle', 'HorizontalAlignment', 'left', 'Color', [0 0 b(i)]);
end % labels displayed on the left
for i=ceil(k/2)+1:k
line([(k-r(i))/(k-1) (k-r(i))/(k-1) 0], [100 100-3*(n+1)-10*(k-i+1) 100-3*(n+1)-10*(k-i+1)], 'Color', [0 0 b(i)]);
%text(-0.2, 100 - 5*(n+1) -10*(k-i+1)+2, num2str(r(i)), 'FontSize', 10, 'HorizontalAlignment', 'left');
text(-0.02, 100 - 3*(n+1) -10*(k-i+1), labels{idx(i)}, 'FontSize', 12, 'VerticalAlignment', 'middle', 'HorizontalAlignment', 'right', 'Color', [0 0 b(i)]);
end % group cliques of statistically similar classifiers
for i=1:size(clique,1)
R = r(clique(i,:));
%line([((k-min(R))/(k-1)) + 0.015 ((k - max(R))/(k-1)) - 0.015], [100-5*i 100-5*i], 'LineWidth', 1, 'Color', 'r');
%line([0 0 0 cd/(k-1) cd/(k-1) cd/(k-1)], [113 111 112 112 111 113], 'LineWidth', 1, 'Color', 'r');
line([((k-min(R))/(k-1)) ((k-min(R))/(k-1)) ((k-min(R))/(k-1)) ((k - max(R))/(k-1)) ((k - max(R))/(k-1)) ((k - max(R))/(k-1))], [100+1-5*i 100-1-5*i 100-5*i 100-5*i 100-1-5*i 100+1-5*i], 'LineWidth', 1, 'Color', 'r');
end
可执行m文件:
load Data
s=AccMatrix;
labels={'SCV1V1','SVC1VA','SVR','CSSVC','SVMOP','NNOP','ELMOP','POM',...
'NNPOM', 'SVOREX','SVORIM','SVORIMLin','KDLOR','GPOR','REDSVM','ORBALL' ,'NPSVORIM'};%方法的标签 alpha=0.05; %显著性水平0.1,0.05或0.01
cd = criticaldifference(s,labels,alpha)
AccMatrix=[
0.28 0.12 0.28 0.11 0.32 0.08 0.26 0.13 0.37 0.10 0.28 0.12 0.42 0.21 0.38 0.17 0.36 0.14 0.36 0.13 0.38 0.12 0.37 0.10 0.34 0.15 0.39 0.09 0.37 0.12 0.36 0.13 0.37 0.11
0.31 0.12 0.33 0.11 0.34 0.13 0.32 0.11 0.32 0.09 0.24 0.11 0.40 0.18 0.50 0.15 0.34 0.18 0.35 0.12 0.34 0.12 0.34 0.12 0.33 0.11 0.48 0.17 0.33 0.11 0.30 0.12 0.28 0.14
0.36 0.09 0.40 0.14 0.39 0.11 0.39 0.13 0.40 0.09 0.39 0.11 0.44 0.16 0.62 0.15 0.50 0.13 0.37 0.13 0.37 0.13 0.37 0.13 0.39 0.12 0.55 0.10 0.38 0.13 0.36 0.12 0.32 0.10
0.22 0.12 0.28 0.16 0.24 0.10 0.27 0.15 0.27 0.11 0.29 0.11 0.39 0.13 0.65 0.14 0.39 0.14 0.26 0.11 0.27 0.11 0.32 0.11 0.26 0.11 0.36 0.16 0.27 0.12 0.30 0.10 0.22 0.10
0.44 0.06 0.45 0.06 0.40 0.07 0.43 0.07 0.46 0.06 0.41 0.06 0.44 0.08 0.50 0.08 0.45 0.09 0.41 0.07 0.40 0.07 0.48 0.07 0.43 0.05 0.67 0.04 0.40 0.07 0.40 0.06 0.41 0.05
0.03 0.03 0.04 0.03 0.04 0.02 0.04 0.02 0.04 0.03 0.04 0.02 0.06 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.04 0.03 0.03 0.03
0.03 0.01 0.03 0.01 0.16 0.03 0.03 0.01 0.03 0.01 0.04 0.01 0.09 0.02 0.09 0.02 0.06 0.05 0.00 0.01 0.00 0.01 0.09 0.02 0.16 0.03 0.03 0.01 0.00 0.00 0.03 0.02 0.02 0.01
0.42 0.03 0.44 0.03 0.43 0.03 0.43 0.03 0.42 0.03 0.42 0.03 0.43 0.02 0.43 0.03 0.46 0.03 0.43 0.03 0.43 0.03 0.43 0.03 0.51 0.03 0.42 0.03 0.43 0.03 0.44 0.03 0.43 0.03
0.01 0.00 0.01 0.01 0.03 0.01 0.01 0.01 0.00 0.00 0.03 0.01 0.16 0.01 0.84 0.30 0.11 0.02 0.01 0.01 0.01 0.01 0.08 0.01 0.05 0.01 0.04 0.01 0.01 0.00 0.01 0.01 0.01 0.00
0.43 0.04 0.43 0.06 0.46 0.07 0.43 0.06 0.45 0.10 0.53 0.09 0.57 0.13 0.66 0.16 0.62 0.14 0.45 0.06 0.45 0.07 0.43 0.08 0.47 0.09 0.42 0.03 0.44 0.05 0.46 0.09 0.42 0.08
0.05 0.03 0.05 0.03 0.07 0.04 0.05 0.03 0.07 0.03 0.06 0.03 0.07 0.03 0.71 0.03 0.06 0.03 0.02 0.01 0.02 0.01 0.74 0.01 0.11 0.03 0.05 0.02 0.02 0.01 0.05 0.02 0.04 0.03
0.36 0.03 0.45 0.03 0.36 0.03 0.44 0.03 0.35 0.03 0.42 0.04 0.43 0.03 0.85 0.02 0.46 0.04 0.36 0.03 0.36 0.03 0.36 0.02 0.37 0.03 0.31 0.03 0.36 0.03 0.38 0.03 0.34 0.03
0.37 0.02 0.37 0.02 0.38 0.02 0.37 0.02 0.37 0.02 0.37 0.03 0.37 0.02 0.38 0.03 0.38 0.02 0.38 0.02 0.38 0.02 0.39 0.02 0.46 0.03 0.39 0.03 0.37 0.02 0.39 0.03 0.37 0.03
0.25 0.06 0.26 0.06 0.32 0.07 0.27 0.06 0.26 0.04 0.39 0.06 0.38 0.06 0.53 0.19 0.55 0.08 0.32 0.05 0.32 0.07 0.41 0.07 0.30 0.07 0.39 0.07 0.32 0.07 0.29 0.05 0.27 0.05
0.35 0.02 0.36 0.02 0.37 0.02 0.36 0.02 0.36 0.02 0.40 0.02 0.40 0.02 0.40 0.02 0.40 0.02 0.37 0.02 0.37 0.02 0.41 0.02 0.35 0.02 0.39 0.01 0.37 0.02 0.33 0.02 0.36 0.02
0.31 0.04 0.33 0.03 0.30 0.03 0.32 0.03 0.29 0.03 0.31 0.04 0.30 0.04 0.29 0.03 0.34 0.13 0.29 0.03 0.28 0.03 0.29 0.04 0.36 0.03 0.29 0.03 0.29 0.03 0.32 0.02 0.29 0.03
0.74 0.02 0.82 0.03 0.75 0.02 0.80 0.03 0.74 0.02 0.71 0.02 0.75 0.02 0.74 0.02 0.73 0.03 0.71 0.03 0.75 0.02 0.76 0.02 0.81 0.03 0.71 0.03 0.75 0.02 0.76 0.02 0.75 0.03 ];
plot a critical difference diagram , MATLAB code的更多相关文章
- Silence Removal and End Point Detection MATLAB Code
转载自:http://ganeshtiwaridotcomdotnp.blogspot.com/2011/08/silence-removal-and-end-point-detection.html ...
- Compute Mean Value of Train and Test Dataset of Caltech-256 dataset in matlab code
Compute Mean Value of Train and Test Dataset of Caltech-256 dataset in matlab code clc;imPath = '/ho ...
- Matlab Code for Visualize the Tracking Results of OTB100 dataset
Matlab Code for Visualize the Tracking Results of OTB100 dataset 2018-11-12 17:06:21 %把所有tracker的结果画 ...
- 支持向量机的smo算法(MATLAB code)
建立smo.m % function [alpha,bias] = smo(X, y, C, tol) function model = smo(X, y, C, tol) % SMO: SMO al ...
- MFCC matlab code
%function ccc=mfcc(x) %归一化mel滤波器组系数 filename=input('input filename:','s'); [x,fs,bits]=wavread(filen ...
- word linkage 选择合适的聚类个数matlab code
clear load fisheriris X = meas; m = size(X,2); % load machine % load census % % X = meas; % X=X(1:20 ...
- sequential minimal optimization,SMO for SVM, (MATLAB code)
function model = SMOforSVM(X, y, C ) %sequential minimal optimization,SMO tol = 0.001; maxIters = 30 ...
- MATLAB中矢量场图的绘制 (quiver/quiver3/dfield/pplane) Plot the vector field with MATLAB
1.quiver函数 一般用于绘制二维矢量场图,函数调用方法如下: quiver(x,y,u,v) 该函数展示了点(x,y)对应的的矢量(u,v).其中,x的长度要求等于u.v的列数,y的长度要求等于 ...
- 求平均排序MATLAB code
A0=R(:,1:2:end); for i=1:17 A1=A0(i,:); p=sort(unique(A1)); for j=1:length(p) Rank0(A1==p(j))=j; end ...
随机推荐
- RNAseq分析软件STAR的安装
wget https://github.com/alexdobin/STAR/releases/STAR-2.5.2a.tar.gz tar -xzf STAR-2.5.2a.tar.gz cd ST ...
- CUBRID学习笔记 6 修改用户密码
修改密码 可以在web管理中修改. 还有另外两种体位 1 语句 ALTER USER user_name PASSWORD 'any_password_here_in_single_quotes'; ...
- iOS - UIActivityViewController
前言 NS_CLASS_AVAILABLE_IOS(6_0) __TVOS_PROHIBITED @interface UIActivityViewController : UIViewControl ...
- iOS - UIScrollView
前言 NS_CLASS_AVAILABLE_IOS(2_0) @interface UIScrollView : UIView <NSCoding> @available(iOS 2.0, ...
- Linux_文档编辑器_简介
1. vi 2. vim 3. ubuntu 有一个 自己的图形化的 文档编辑器,用起来比较方便: gedit 4. 5.
- Promise A 规范的一个简单的浏览器端实现
简单的实现了一个promise 的规范,留着接下来模块使用.感觉还有很多能优化的地方,有时间看看源码,或者其他大神的代码 主要是Then 函数.回调有点绕人. !(function(win) { fu ...
- Monkey学习(3)如何在Android模拟器中安装apk
1.运行SDK Manager,选择模拟器,并运行模拟器,我这里用的是已经配置好的模拟器“RedMI” 2.已启动好的模拟器“RedMI” 3.记住需要安装apk文件的位置,我这里放在了F盘的根目录下 ...
- 【服务器防护】VPN的ip变更,导致无法连接服务器,解决方法【阿里云ECS】
在阿里云的管理控制台,云服务器ECS - 对应服务器 - 选“管理” - “连接管理终端” 通过这个入口,可以进入Linux云服务器,修改防火墙限制的IP即可
- angularJS中ng-change的用法
<html> <head> <meta charset="utf-8"> <script src="http://apps.bd ...
- python语法笔记(七)
python标准库 Python有一套很有用的标准库(standard library).标准库会随着Python解释器,一起安装在你的电脑中的.它是Python的一个组成部分.这些标准库是Pytho ...