Codeforces Round #337 (Div. 2) C. Harmony Analysis 数学
The semester is already ending, so Danil made an effort and decided to visit a lesson on harmony analysis to know how does the professor look like, at least. Danil was very bored on this lesson until the teacher gave the group a simple task: find 4 vectors in 4-dimensional space, such that every coordinate of every vector is 1 or - 1 and any two vectors are orthogonal. Just as a reminder, two vectors in n-dimensional space are considered to be orthogonal if and only if their scalar product is equal to zero, that is:
.
Danil quickly managed to come up with the solution for this problem and the teacher noticed that the problem can be solved in a more general case for 2k vectors in 2k-dimensinoal space. When Danil came home, he quickly came up with the solution for this problem. Can you cope with it?
The only line of the input contains a single integer k (0 ≤ k ≤ 9).
Print 2k lines consisting of 2k characters each. The j-th character of the i-th line must be equal to ' * ' if the j-th coordinate of the i-th vector is equal to - 1, and must be equal to ' + ' if it's equal to + 1. It's guaranteed that the answer always exists.
If there are many correct answers, print any.
2
++**
+*+*
++++
+**+
Consider all scalar products in example:
- Vectors 1 and 2: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( + 1) + ( - 1)·( - 1) = 0
- Vectors 1 and 3: ( + 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) + ( - 1)·( + 1) = 0
- Vectors 1 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( - 1) + ( - 1)·( + 1) = 0
- Vectors 2 and 3: ( + 1)·( + 1) + ( - 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) = 0
- Vectors 2 and 4: ( + 1)·( + 1) + ( - 1)·( - 1) + ( + 1)·( - 1) + ( - 1)·( + 1) = 0
- Vectors 3 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( + 1)·( - 1) + ( + 1)·( + 1) = 0
题意:给 k,构造2^k * 2^k的图, 使得任意两行 相乘相加值为0
题解:对于一个 满足了条件的 正方形,想要得到将其边长翻倍的图形 我们将它复制接右边,接到正下方,再取反接到斜对角,就是了;
根据这个我们从1*1得到 2*2得到 4*4---到答案
//meek///#include<bits/stdc++.h>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include<iostream>
#include<bitset>
#include<vector>
#include <queue>
#include <map>
#include <set>
#include <stack>
using namespace std ;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair
typedef long long ll; const int N = ;
const int M = ;
const int inf = 0x3f3f3f3f;
const int MOD = ;
const double eps = 0.000001; int a[N][N],n;
int main() {
scanf("%d",&n);
a[][]=;
for(int x=;x<=n;x++) {
for(int i=;i<(<<x-);i++) {
for(int j=;j<(<<x-);j++) {
a[i][j+(<<x-)]=a[i][j];
a[i+(<<x-)][j]=a[i][j];
a[i+(<<x-)][j+(<<x-)]=-a[i][j];
}
}
}
for(int i=;i<(<<n);i++) {
for(int j=;j<(<<n);j++) {
if(a[i][j])printf("+");
else printf("*");
}
printf("\n");
}
return ;
}
代码
Codeforces Round #337 (Div. 2) C. Harmony Analysis 数学的更多相关文章
- Codeforces Round #337 (Div. 2) C. Harmony Analysis 构造
C. Harmony Analysis 题目连接: http://www.codeforces.com/contest/610/problem/C Description The semester i ...
- Codeforces Round #337 (Div. 2) 610C Harmony Analysis(脑洞)
C. Harmony Analysis time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #337 (Div. 2) C. Harmony Analysis
题目链接:http://codeforces.com/contest/610/problem/C 解题思路: 将后一个矩阵拆分为四个前一状态矩阵,其中三个与前一状态相同,剩下一个直接取反就行.还有很多 ...
- Codeforces Round #337 (Div. 2)
水 A - Pasha and Stick #include <bits/stdc++.h> using namespace std; typedef long long ll; cons ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线
D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...
- Codeforces Round #337 (Div. 2) B. Vika and Squares 贪心
B. Vika and Squares 题目连接: http://www.codeforces.com/contest/610/problem/B Description Vika has n jar ...
- Codeforces Round #337 (Div. 2) A. Pasha and Stick 数学
A. Pasha and Stick 题目连接: http://www.codeforces.com/contest/610/problem/A Description Pasha has a woo ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)
题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并
D. Vika and Segments Vika has an infinite sheet of squared paper. Initially all squares are whit ...
随机推荐
- android EditText获取光标位置并安插字符删除字符
android EditText获取光标位置并插入字符删除字符1.获取光标位置int index = editText.getSelectionStart(); 2.在光标处插入字符int index ...
- [转]SOLID开发原则-面向对象
S.O.L.I.D是面向对象设计和编程(OOD&OOP)中几个重要编码原则(Programming Priciple)的首字母缩写. SRP The Single Responsibility ...
- UML详解
学习c++必不可少UML,UML从考虑系统的不同角度出发,定义了用例图.类图.对象图.状态图.活动图.序列图.协作图.构件图.部署图等9种图.这些图从不同的侧面对系统进行描述.系统模型将这些不同的侧面 ...
- python关于字符串的操作
#-*- coding:utf-8 -*-#Author:gxli#字符串的操作name=' zhangsan,lisi,wangwu '#分割操作name=name.split(',')print( ...
- fstream对象重复使用时注意clear()的调用
fstream对象重复使用时注意clear()的调用,否则会造成打开第二个文件失败.这是因为一个fstream对象对应磁盘上的一个文件,这种绑定关系在调用open()函数或者构造函数时指定,但有时我们 ...
- 单元测试篇----cppUnit的安装与使用
在刚学习单元测试章节的时候,尝试着使用dev—c++来编译cppunit,但一直没成功,也尝试问过同学,一直没有很好的方法,因此浪费了不少时间.今天又耐心的尝式一下,意外成功了.以下是详细的安装步骤: ...
- Elasticseach部分语法总结
索引 在Elasticsearch中,文档归属于一种类型(type),而这些类型存在于索引(index)中,我们可以画一些简单的对比图来类比传统关系型数据库 Relational DB -> D ...
- 【转】eclipse下使用hibernate tools实现hibernate逆向工程
一.基本环境 Eclipse 3.6 AppFuse Struts2 2.1.0 JBoss Hibernate Tools 3.4.0 二.JBoss Hibernate Tools 3.4.0安装 ...
- windows下配置nodejs+npm
windows下安装nodejs是比较方便的 (v0.6.0之后,支持windows native),进入官网http://nodejs.org/ 点击install即可安装.下载完成后一路next ...
- bzoj 3142 数学
找规律后可以之后答案就是 k^(m-1)*(n-(m-1)*k)+(m+(m-1)*k+1)*k^(m-1) div 2 /************************************** ...