C. Harmony Analysis
 

The semester is already ending, so Danil made an effort and decided to visit a lesson on harmony analysis to know how does the professor look like, at least. Danil was very bored on this lesson until the teacher gave the group a simple task: find 4 vectors in 4-dimensional space, such that every coordinate of every vector is 1 or  - 1 and any two vectors are orthogonal. Just as a reminder, two vectors in n-dimensional space are considered to be orthogonal if and only if their scalar product is equal to zero, that is:

.

Danil quickly managed to come up with the solution for this problem and the teacher noticed that the problem can be solved in a more general case for 2k vectors in 2k-dimensinoal space. When Danil came home, he quickly came up with the solution for this problem. Can you cope with it?

Input

The only line of the input contains a single integer k (0 ≤ k ≤ 9).

Output

Print 2k lines consisting of 2k characters each. The j-th character of the i-th line must be equal to ' * ' if the j-th coordinate of the i-th vector is equal to  - 1, and must be equal to ' + ' if it's equal to  + 1. It's guaranteed that the answer always exists.

If there are many correct answers, print any.

Sample test(s)
input
2
output
++**
+*+*
++++
+**+
Note

Consider all scalar products in example:

  • Vectors 1 and 2: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( + 1) + ( - 1)·( - 1) = 0
  • Vectors 1 and 3: ( + 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) + ( - 1)·( + 1) = 0
  • Vectors 1 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( - 1) + ( - 1)·( + 1) = 0
  • Vectors 2 and 3: ( + 1)·( + 1) + ( - 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) = 0
  • Vectors 2 and 4: ( + 1)·( + 1) + ( - 1)·( - 1) + ( + 1)·( - 1) + ( - 1)·( + 1) = 0
  • Vectors 3 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( + 1)·( - 1) + ( + 1)·( + 1) = 0

题意:给 k,构造2^k * 2^k的图,  使得任意两行 相乘相加值为0

题解:对于一个  满足了条件的 正方形,想要得到将其边长翻倍的图形  我们将它复制接右边,接到正下方,再取反接到斜对角,就是了;

    根据这个我们从1*1得到  2*2得到 4*4---到答案

//meek///#include<bits/stdc++.h>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include<iostream>
#include<bitset>
#include<vector>
#include <queue>
#include <map>
#include <set>
#include <stack>
using namespace std ;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair
typedef long long ll; const int N = ;
const int M = ;
const int inf = 0x3f3f3f3f;
const int MOD = ;
const double eps = 0.000001; int a[N][N],n;
int main() {
scanf("%d",&n);
a[][]=;
for(int x=;x<=n;x++) {
for(int i=;i<(<<x-);i++) {
for(int j=;j<(<<x-);j++) {
a[i][j+(<<x-)]=a[i][j];
a[i+(<<x-)][j]=a[i][j];
a[i+(<<x-)][j+(<<x-)]=-a[i][j];
}
}
}
for(int i=;i<(<<n);i++) {
for(int j=;j<(<<n);j++) {
if(a[i][j])printf("+");
else printf("*");
}
printf("\n");
}
return ;
}

代码

Codeforces Round #337 (Div. 2) C. Harmony Analysis 数学的更多相关文章

  1. Codeforces Round #337 (Div. 2) C. Harmony Analysis 构造

    C. Harmony Analysis 题目连接: http://www.codeforces.com/contest/610/problem/C Description The semester i ...

  2. Codeforces Round #337 (Div. 2) 610C Harmony Analysis(脑洞)

    C. Harmony Analysis time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  3. Codeforces Round #337 (Div. 2) C. Harmony Analysis

    题目链接:http://codeforces.com/contest/610/problem/C 解题思路: 将后一个矩阵拆分为四个前一状态矩阵,其中三个与前一状态相同,剩下一个直接取反就行.还有很多 ...

  4. Codeforces Round #337 (Div. 2)

    水 A - Pasha and Stick #include <bits/stdc++.h> using namespace std; typedef long long ll; cons ...

  5. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线

    D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...

  6. Codeforces Round #337 (Div. 2) B. Vika and Squares 贪心

    B. Vika and Squares 题目连接: http://www.codeforces.com/contest/610/problem/B Description Vika has n jar ...

  7. Codeforces Round #337 (Div. 2) A. Pasha and Stick 数学

    A. Pasha and Stick 题目连接: http://www.codeforces.com/contest/610/problem/A Description Pasha has a woo ...

  8. Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)

    题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...

  9. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并

    D. Vika and Segments     Vika has an infinite sheet of squared paper. Initially all squares are whit ...

随机推荐

  1. android EditText获取光标位置并安插字符删除字符

    android EditText获取光标位置并插入字符删除字符1.获取光标位置int index = editText.getSelectionStart(); 2.在光标处插入字符int index ...

  2. [转]SOLID开发原则-面向对象

    S.O.L.I.D是面向对象设计和编程(OOD&OOP)中几个重要编码原则(Programming Priciple)的首字母缩写. SRP The Single Responsibility ...

  3. UML详解

    学习c++必不可少UML,UML从考虑系统的不同角度出发,定义了用例图.类图.对象图.状态图.活动图.序列图.协作图.构件图.部署图等9种图.这些图从不同的侧面对系统进行描述.系统模型将这些不同的侧面 ...

  4. python关于字符串的操作

    #-*- coding:utf-8 -*-#Author:gxli#字符串的操作name=' zhangsan,lisi,wangwu '#分割操作name=name.split(',')print( ...

  5. fstream对象重复使用时注意clear()的调用

    fstream对象重复使用时注意clear()的调用,否则会造成打开第二个文件失败.这是因为一个fstream对象对应磁盘上的一个文件,这种绑定关系在调用open()函数或者构造函数时指定,但有时我们 ...

  6. 单元测试篇----cppUnit的安装与使用

    在刚学习单元测试章节的时候,尝试着使用dev—c++来编译cppunit,但一直没成功,也尝试问过同学,一直没有很好的方法,因此浪费了不少时间.今天又耐心的尝式一下,意外成功了.以下是详细的安装步骤: ...

  7. Elasticseach部分语法总结

    索引 在Elasticsearch中,文档归属于一种类型(type),而这些类型存在于索引(index)中,我们可以画一些简单的对比图来类比传统关系型数据库 Relational DB -> D ...

  8. 【转】eclipse下使用hibernate tools实现hibernate逆向工程

    一.基本环境 Eclipse 3.6 AppFuse Struts2 2.1.0 JBoss Hibernate Tools 3.4.0 二.JBoss Hibernate Tools 3.4.0安装 ...

  9. windows下配置nodejs+npm

    windows下安装nodejs是比较方便的 (v0.6.0之后,支持windows native),进入官网http://nodejs.org/  点击install即可安装.下载完成后一路next ...

  10. bzoj 3142 数学

    找规律后可以之后答案就是 k^(m-1)*(n-(m-1)*k)+(m+(m-1)*k+1)*k^(m-1) div 2 /************************************** ...