Codeforces Round #337 (Div. 2) C. Harmony Analysis 数学
The semester is already ending, so Danil made an effort and decided to visit a lesson on harmony analysis to know how does the professor look like, at least. Danil was very bored on this lesson until the teacher gave the group a simple task: find 4 vectors in 4-dimensional space, such that every coordinate of every vector is 1 or - 1 and any two vectors are orthogonal. Just as a reminder, two vectors in n-dimensional space are considered to be orthogonal if and only if their scalar product is equal to zero, that is:
.
Danil quickly managed to come up with the solution for this problem and the teacher noticed that the problem can be solved in a more general case for 2k vectors in 2k-dimensinoal space. When Danil came home, he quickly came up with the solution for this problem. Can you cope with it?
The only line of the input contains a single integer k (0 ≤ k ≤ 9).
Print 2k lines consisting of 2k characters each. The j-th character of the i-th line must be equal to ' * ' if the j-th coordinate of the i-th vector is equal to - 1, and must be equal to ' + ' if it's equal to + 1. It's guaranteed that the answer always exists.
If there are many correct answers, print any.
2
++**
+*+*
++++
+**+
Consider all scalar products in example:
- Vectors 1 and 2: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( + 1) + ( - 1)·( - 1) = 0
- Vectors 1 and 3: ( + 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) + ( - 1)·( + 1) = 0
- Vectors 1 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( - 1) + ( - 1)·( + 1) = 0
- Vectors 2 and 3: ( + 1)·( + 1) + ( - 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) = 0
- Vectors 2 and 4: ( + 1)·( + 1) + ( - 1)·( - 1) + ( + 1)·( - 1) + ( - 1)·( + 1) = 0
- Vectors 3 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( + 1)·( - 1) + ( + 1)·( + 1) = 0
题意:给 k,构造2^k * 2^k的图, 使得任意两行 相乘相加值为0
题解:对于一个 满足了条件的 正方形,想要得到将其边长翻倍的图形 我们将它复制接右边,接到正下方,再取反接到斜对角,就是了;
根据这个我们从1*1得到 2*2得到 4*4---到答案
//meek///#include<bits/stdc++.h>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include<iostream>
#include<bitset>
#include<vector>
#include <queue>
#include <map>
#include <set>
#include <stack>
using namespace std ;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair
typedef long long ll; const int N = ;
const int M = ;
const int inf = 0x3f3f3f3f;
const int MOD = ;
const double eps = 0.000001; int a[N][N],n;
int main() {
scanf("%d",&n);
a[][]=;
for(int x=;x<=n;x++) {
for(int i=;i<(<<x-);i++) {
for(int j=;j<(<<x-);j++) {
a[i][j+(<<x-)]=a[i][j];
a[i+(<<x-)][j]=a[i][j];
a[i+(<<x-)][j+(<<x-)]=-a[i][j];
}
}
}
for(int i=;i<(<<n);i++) {
for(int j=;j<(<<n);j++) {
if(a[i][j])printf("+");
else printf("*");
}
printf("\n");
}
return ;
}
代码
Codeforces Round #337 (Div. 2) C. Harmony Analysis 数学的更多相关文章
- Codeforces Round #337 (Div. 2) C. Harmony Analysis 构造
C. Harmony Analysis 题目连接: http://www.codeforces.com/contest/610/problem/C Description The semester i ...
- Codeforces Round #337 (Div. 2) 610C Harmony Analysis(脑洞)
C. Harmony Analysis time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #337 (Div. 2) C. Harmony Analysis
题目链接:http://codeforces.com/contest/610/problem/C 解题思路: 将后一个矩阵拆分为四个前一状态矩阵,其中三个与前一状态相同,剩下一个直接取反就行.还有很多 ...
- Codeforces Round #337 (Div. 2)
水 A - Pasha and Stick #include <bits/stdc++.h> using namespace std; typedef long long ll; cons ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线
D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...
- Codeforces Round #337 (Div. 2) B. Vika and Squares 贪心
B. Vika and Squares 题目连接: http://www.codeforces.com/contest/610/problem/B Description Vika has n jar ...
- Codeforces Round #337 (Div. 2) A. Pasha and Stick 数学
A. Pasha and Stick 题目连接: http://www.codeforces.com/contest/610/problem/A Description Pasha has a woo ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)
题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并
D. Vika and Segments Vika has an infinite sheet of squared paper. Initially all squares are whit ...
随机推荐
- Windows PowerShell ISE
Windows PowerShell 集成脚本环境 (ISE) 是 Windows PowerShell 的主机应用程序.在 Windows PowerShell ISE 中,可以在单一 Window ...
- MVC4.0 如何设置默认静态首页index.shtml
1.不启用二级域名情况下(www.xxx.com)下设置默认静态首页index.shtml 通过配置IIS的默认文档,设置默认首页地址 然后在MVC的路由中写入忽略默认路由代码 routes.Igno ...
- [转]unzip解压windows zip乱码的处理
[转]unzip解压windows zip乱码的处理 http://blog.sina.com.cn/s/blog_6c9d65a101012gz0.html 朋友从windows传过来的zip文件, ...
- 实现压缩access(*.mdb)数据库的方法
下面的函数用来压缩access数据库 需要增加ComObj单元 //压缩与修复数据库,覆盖源文件 function CompactDatabase(AFileName,APassWord:string ...
- 标准非STL之bitset
template <size_t N> class bitset; BitsetA bitset stores bits (elements with only two possible ...
- 闹钟类app构想
NABC--闹钟app N:我们打算针对那些易健忘的人来制作一款闹钟功能的记事本,具来说服务的对象有很多:有健忘的人,还有情侣,北漂的人及其父母(...),常年见不到亲人(双方),后期我们若提前完成基 ...
- 查看Android应用签名信息
本文档介绍在Android下如何查看自己的应用签名及三方APK或系统APK签名信息,包含其中的MD5.SHA1.SHA256值和签名算法等信息. 1.查看自己的应用签名 可以通过两种方式查看 (1) ...
- Spring MVC 环境搭建(一)
一.建立 JavaWeb 项目 1.建立一个 Java 项目. 2.在项目下新建一个文件夹 webapp (命名可自取,这个目录即是网站根目录),再在该文件夹下新建一个 WEB-INF 文件夹(命名固 ...
- Poj 2528 Mayor's posters 分类: Brush Mode 2014-07-23 09:12 84人阅读 评论(0) 收藏
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 40570 Accepted: 11798 ...
- [百度空间] [原] 全局operator delete重载到DLL
由于很久没有搞内存管理了,很多细节都忘记了今天项目要用到operator delete重载到DLL,发现了问题,网上搜索以后,再对比以前写的代码,发现了问题:原来MSVC默认的operator new ...