C. Harmony Analysis
 

The semester is already ending, so Danil made an effort and decided to visit a lesson on harmony analysis to know how does the professor look like, at least. Danil was very bored on this lesson until the teacher gave the group a simple task: find 4 vectors in 4-dimensional space, such that every coordinate of every vector is 1 or  - 1 and any two vectors are orthogonal. Just as a reminder, two vectors in n-dimensional space are considered to be orthogonal if and only if their scalar product is equal to zero, that is:

.

Danil quickly managed to come up with the solution for this problem and the teacher noticed that the problem can be solved in a more general case for 2k vectors in 2k-dimensinoal space. When Danil came home, he quickly came up with the solution for this problem. Can you cope with it?

Input

The only line of the input contains a single integer k (0 ≤ k ≤ 9).

Output

Print 2k lines consisting of 2k characters each. The j-th character of the i-th line must be equal to ' * ' if the j-th coordinate of the i-th vector is equal to  - 1, and must be equal to ' + ' if it's equal to  + 1. It's guaranteed that the answer always exists.

If there are many correct answers, print any.

Sample test(s)
input
2
output
++**
+*+*
++++
+**+
Note

Consider all scalar products in example:

  • Vectors 1 and 2: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( + 1) + ( - 1)·( - 1) = 0
  • Vectors 1 and 3: ( + 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) + ( - 1)·( + 1) = 0
  • Vectors 1 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( - 1) + ( - 1)·( + 1) = 0
  • Vectors 2 and 3: ( + 1)·( + 1) + ( - 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) = 0
  • Vectors 2 and 4: ( + 1)·( + 1) + ( - 1)·( - 1) + ( + 1)·( - 1) + ( - 1)·( + 1) = 0
  • Vectors 3 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( + 1)·( - 1) + ( + 1)·( + 1) = 0

题意:给 k,构造2^k * 2^k的图,  使得任意两行 相乘相加值为0

题解:对于一个  满足了条件的 正方形,想要得到将其边长翻倍的图形  我们将它复制接右边,接到正下方,再取反接到斜对角,就是了;

    根据这个我们从1*1得到  2*2得到 4*4---到答案

//meek///#include<bits/stdc++.h>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include<iostream>
#include<bitset>
#include<vector>
#include <queue>
#include <map>
#include <set>
#include <stack>
using namespace std ;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair
typedef long long ll; const int N = ;
const int M = ;
const int inf = 0x3f3f3f3f;
const int MOD = ;
const double eps = 0.000001; int a[N][N],n;
int main() {
scanf("%d",&n);
a[][]=;
for(int x=;x<=n;x++) {
for(int i=;i<(<<x-);i++) {
for(int j=;j<(<<x-);j++) {
a[i][j+(<<x-)]=a[i][j];
a[i+(<<x-)][j]=a[i][j];
a[i+(<<x-)][j+(<<x-)]=-a[i][j];
}
}
}
for(int i=;i<(<<n);i++) {
for(int j=;j<(<<n);j++) {
if(a[i][j])printf("+");
else printf("*");
}
printf("\n");
}
return ;
}

代码

Codeforces Round #337 (Div. 2) C. Harmony Analysis 数学的更多相关文章

  1. Codeforces Round #337 (Div. 2) C. Harmony Analysis 构造

    C. Harmony Analysis 题目连接: http://www.codeforces.com/contest/610/problem/C Description The semester i ...

  2. Codeforces Round #337 (Div. 2) 610C Harmony Analysis(脑洞)

    C. Harmony Analysis time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  3. Codeforces Round #337 (Div. 2) C. Harmony Analysis

    题目链接:http://codeforces.com/contest/610/problem/C 解题思路: 将后一个矩阵拆分为四个前一状态矩阵,其中三个与前一状态相同,剩下一个直接取反就行.还有很多 ...

  4. Codeforces Round #337 (Div. 2)

    水 A - Pasha and Stick #include <bits/stdc++.h> using namespace std; typedef long long ll; cons ...

  5. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线

    D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...

  6. Codeforces Round #337 (Div. 2) B. Vika and Squares 贪心

    B. Vika and Squares 题目连接: http://www.codeforces.com/contest/610/problem/B Description Vika has n jar ...

  7. Codeforces Round #337 (Div. 2) A. Pasha and Stick 数学

    A. Pasha and Stick 题目连接: http://www.codeforces.com/contest/610/problem/A Description Pasha has a woo ...

  8. Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)

    题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...

  9. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并

    D. Vika and Segments     Vika has an infinite sheet of squared paper. Initially all squares are whit ...

随机推荐

  1. struts2传递参数值的3中方式

    在使用struts2的时候,当要传递的参数不多的时候,我们会选择使用属性来传参,而当要传递的参数很多的时候,或者多个action会有共用的参数时,我们会使用另外两种传参方式. 注意:使用Model D ...

  2. iOS代码实践总结

    转载地址:http://mobile.51cto.com/hot-492236.htm 最近一个月除了专门抽时间和精力重构之外,还有就是遇到需要添加功能的模块的时候,由于项目中的代码历史因素比较多,第 ...

  3. mysql字段累加concat

    update tablename set field1=concat(field1,'_bak') where field2 like '%@xxx’

  4. mysql取整,小数点处理函数floor(), round()

    mysql数值处理函数floor与round    在mysql中,当处理数值时,会用到数值处理函数,如有一个float型数值2.13,你想只要整数2,那就需要下面的函数floor与round.   ...

  5. 【ASP.NET MVC 回顾】HtmlHepler应用-分页组件

    以前在ASP.NET WebForm开发中会用到许多控件,像DropDownList等.同样ASP.NET MVC中也有类似的控件-HtmlHelper. HtmlHelper和服务器控件相比,Htm ...

  6. [转]gdb结合coredump定位崩溃进程

    [转]gdb结合coredump定位崩溃进程 http://blog.sina.com.cn/s/blog_54f82cc201013tk4.html Linux环境下经常遇到某个进程挂掉而找不到原因 ...

  7. sharepoint 2010 重建遇到的问题

    需要重新安装Sharepoint 2010 ,遇到问题记录下来,sharepoint中安装了热补丁和英文语言包. 卸载: 1.运行配置向导将服务器从服务场中脱离: 2.在管理中心中卸载sharepoi ...

  8. [shell实例]——用脚本实现向多台服务器批量复制文件(nmap、scp)

    练习环境: (1)所有服务器将防火墙和selinux关闭 (2)所有服务器的root密码设置为aixocm (3)所有服务器都为10.0.100.*网段,并保证能够和其它主机通信 (4)所有服务器确保 ...

  9. 20145105 《Java程序设计》第2周学习总结

    20145105 <Java程序设计>第2周学习总结 教材学习内容总结 第三章主要的学习内容与c语言有很多相似的地方,讲述了Java的基本语法.其中涵盖: 1. 类型: - short整数 ...

  10. 转载:js动态获取图片长宽尺寸(兼容所有浏览器,速度极快)

    转自:http://blog.phpdr.net/js-get-image-size.html lightbox类效果为了让图片居中显示而使用预加载,需要等待完全加载完毕才能显示,体验不佳(如fili ...