C. Harmony Analysis
 

The semester is already ending, so Danil made an effort and decided to visit a lesson on harmony analysis to know how does the professor look like, at least. Danil was very bored on this lesson until the teacher gave the group a simple task: find 4 vectors in 4-dimensional space, such that every coordinate of every vector is 1 or  - 1 and any two vectors are orthogonal. Just as a reminder, two vectors in n-dimensional space are considered to be orthogonal if and only if their scalar product is equal to zero, that is:

.

Danil quickly managed to come up with the solution for this problem and the teacher noticed that the problem can be solved in a more general case for 2k vectors in 2k-dimensinoal space. When Danil came home, he quickly came up with the solution for this problem. Can you cope with it?

Input

The only line of the input contains a single integer k (0 ≤ k ≤ 9).

Output

Print 2k lines consisting of 2k characters each. The j-th character of the i-th line must be equal to ' * ' if the j-th coordinate of the i-th vector is equal to  - 1, and must be equal to ' + ' if it's equal to  + 1. It's guaranteed that the answer always exists.

If there are many correct answers, print any.

Sample test(s)
input
2
output
++**
+*+*
++++
+**+
Note

Consider all scalar products in example:

  • Vectors 1 and 2: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( + 1) + ( - 1)·( - 1) = 0
  • Vectors 1 and 3: ( + 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) + ( - 1)·( + 1) = 0
  • Vectors 1 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( - 1)·( - 1) + ( - 1)·( + 1) = 0
  • Vectors 2 and 3: ( + 1)·( + 1) + ( - 1)·( + 1) + ( + 1)·( + 1) + ( - 1)·( + 1) = 0
  • Vectors 2 and 4: ( + 1)·( + 1) + ( - 1)·( - 1) + ( + 1)·( - 1) + ( - 1)·( + 1) = 0
  • Vectors 3 and 4: ( + 1)·( + 1) + ( + 1)·( - 1) + ( + 1)·( - 1) + ( + 1)·( + 1) = 0

题意:给 k,构造2^k * 2^k的图,  使得任意两行 相乘相加值为0

题解:对于一个  满足了条件的 正方形,想要得到将其边长翻倍的图形  我们将它复制接右边,接到正下方,再取反接到斜对角,就是了;

    根据这个我们从1*1得到  2*2得到 4*4---到答案

//meek///#include<bits/stdc++.h>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include<iostream>
#include<bitset>
#include<vector>
#include <queue>
#include <map>
#include <set>
#include <stack>
using namespace std ;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair
typedef long long ll; const int N = ;
const int M = ;
const int inf = 0x3f3f3f3f;
const int MOD = ;
const double eps = 0.000001; int a[N][N],n;
int main() {
scanf("%d",&n);
a[][]=;
for(int x=;x<=n;x++) {
for(int i=;i<(<<x-);i++) {
for(int j=;j<(<<x-);j++) {
a[i][j+(<<x-)]=a[i][j];
a[i+(<<x-)][j]=a[i][j];
a[i+(<<x-)][j+(<<x-)]=-a[i][j];
}
}
}
for(int i=;i<(<<n);i++) {
for(int j=;j<(<<n);j++) {
if(a[i][j])printf("+");
else printf("*");
}
printf("\n");
}
return ;
}

代码

Codeforces Round #337 (Div. 2) C. Harmony Analysis 数学的更多相关文章

  1. Codeforces Round #337 (Div. 2) C. Harmony Analysis 构造

    C. Harmony Analysis 题目连接: http://www.codeforces.com/contest/610/problem/C Description The semester i ...

  2. Codeforces Round #337 (Div. 2) 610C Harmony Analysis(脑洞)

    C. Harmony Analysis time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  3. Codeforces Round #337 (Div. 2) C. Harmony Analysis

    题目链接:http://codeforces.com/contest/610/problem/C 解题思路: 将后一个矩阵拆分为四个前一状态矩阵,其中三个与前一状态相同,剩下一个直接取反就行.还有很多 ...

  4. Codeforces Round #337 (Div. 2)

    水 A - Pasha and Stick #include <bits/stdc++.h> using namespace std; typedef long long ll; cons ...

  5. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线

    D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...

  6. Codeforces Round #337 (Div. 2) B. Vika and Squares 贪心

    B. Vika and Squares 题目连接: http://www.codeforces.com/contest/610/problem/B Description Vika has n jar ...

  7. Codeforces Round #337 (Div. 2) A. Pasha and Stick 数学

    A. Pasha and Stick 题目连接: http://www.codeforces.com/contest/610/problem/A Description Pasha has a woo ...

  8. Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)

    题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...

  9. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并

    D. Vika and Segments     Vika has an infinite sheet of squared paper. Initially all squares are whit ...

随机推荐

  1. Python: 函数参数小结

    参数的类型: 函数的参数有2种类型: 1. 函数定义时用于接收值的形式参数Parameters. 2. 函数调用时用于传递值的实际参数Arguments. 参数的传递: 传递方式有2种: 1. 值传递 ...

  2. 5.Knockout.Js(自定义绑定)

    前言 你可以创建自己的自定义绑定 – 没有必要非要使用内嵌的绑定(像click,value等).你可以你封装复杂的逻辑或行为,自定义很容易使用和重用的绑定.例如,你可以在form表单里自定义像grid ...

  3. ioctl和unlock_ioctl的区别

    今天调一个程序调了半天,发现应用程序的ioctl的cmd参数传送到驱动程序的ioctl发生改变.而根据<linux设备驱动>这个cmd应该是不变的.因为在kernel 2.6.36 中已经 ...

  4. Log4J配置文件说明

    Log4J的配置文件(Configuration File)就是用来设置记录器的级别.存放器和布局的,它可接key=value格式的设置或xml格式的设置信息.通过配置,可以创建出Log4J的运行环境 ...

  5. JAVABEAN EJB POJO区别

    1.POJO POJO(Plain Old Java Object)这种叫法是Martin Fowler.Rebecca Parsons和Josh MacKenzie在2000年的一次演讲的时候提出来 ...

  6. windows phone和android,ios的touch事件兼容

    1.开发背景 最近用html5写了个小游戏,中间踩过无数坑,有很多甚至百度都百度不到答案,可见html5还真是不成熟,兼容性的复杂度比ie6有过之而无不及,性能那个渣简直无力吐槽.. 好了,吐槽结束, ...

  7. openfire插件开发之完美开发

    http://redhacker.iteye.com/blog/1919329 一.说在前面 在继上篇Openfire3.8.2在eclipse中Debug方式启动最简单的方式后,我研究了openfi ...

  8. django Forgienkey字段 在前台用js做处理

    在我做的项目中有个选择省城市的选项,这两个字段的关系是一对多的关系class Province(models.Model): # 省会      name = models.CharField(max ...

  9. Nginx问题总汇

    http://blog.csdn.net/llnara/article/details/8691049 关键字: open var run nginx pid failed 产生原因:添加模块,重编译 ...

  10. 我是一只it小小鸟阅读笔记

    “我们具有各自的独特性--我们兴趣各异,有不同的家庭背景,不同的知识储备,不同的思维方式……但在现实中,我们也会碰到类似的人生选择的关口,我们会犯类似的错误,有类似的迷惘,也会为类似的精彩鼓掌,而且很 ...