#include <stdio.h>  // for snprintf
#include <string>
#include <vector> #include "boost/algorithm/string.hpp"
#include "google/protobuf/text_format.h" #include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/net.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/db.hpp"
#include "caffe/util/io.hpp"
#include "caffe/vision_layers.hpp" using caffe::Blob;
using caffe::Caffe;
using caffe::Datum;
using caffe::Net;
using boost::shared_ptr;
using std::string;
namespace db = caffe::db; template<typename Dtype>
int feature_extraction_pipeline(int argc, char** argv); int main(int argc, char** argv) {
return feature_extraction_pipeline<float>(argc, argv);
// return feature_extraction_pipeline<double>(argc, argv);
} template<typename Dtype>
int feature_extraction_pipeline(int argc, char** argv) {
::google::InitGoogleLogging(argv[]);
const int num_required_args = ;
if (argc < num_required_args) {
LOG(ERROR)<<
"This program takes in a trained network and an input data layer, and then"
" extract features of the input data produced by the net.\n"
"Usage: extract_features pretrained_net_param"
" feature_extraction_proto_file extract_feature_blob_name1[,name2,...]"
" save_feature_dataset_name1[,name2,...] num_mini_batches db_type"
" [CPU/GPU] [DEVICE_ID=0]\n"
"Note: you can extract multiple features in one pass by specifying"
" multiple feature blob names and dataset names separated by ','."
" The names cannot contain white space characters and the number of blobs"
" and datasets must be equal.";
return ;
}
int arg_pos = num_required_args; arg_pos = num_required_args;
if (argc > arg_pos && strcmp(argv[arg_pos], "GPU") == ) {
LOG(ERROR)<< "Using GPU";
uint device_id = ;
if (argc > arg_pos + ) {
device_id = atoi(argv[arg_pos + ]);
CHECK_GE(device_id, );
}
LOG(ERROR) << "Using Device_id=" << device_id;
Caffe::SetDevice(device_id);
Caffe::set_mode(Caffe::GPU);
} else {
LOG(ERROR) << "Using CPU";
Caffe::set_mode(Caffe::CPU);
} arg_pos = ; // the name of the executable
std::string pretrained_binary_proto(argv[++arg_pos]); // Expected prototxt contains at least one data layer such as
// the layer data_layer_name and one feature blob such as the
// fc7 top blob to extract features.
/*
layers {
name: "data_layer_name"
type: DATA
data_param {
source: "/path/to/your/images/to/extract/feature/images_leveldb"
mean_file: "/path/to/your/image_mean.binaryproto"
batch_size: 128
crop_size: 227
mirror: false
}
top: "data_blob_name"
top: "label_blob_name"
}
layers {
name: "drop7"
type: DROPOUT
dropout_param {
dropout_ratio: 0.5
}
bottom: "fc7"
top: "fc7"
}
*/
std::string feature_extraction_proto(argv[++arg_pos]);
shared_ptr<Net<Dtype> > feature_extraction_net(
new Net<Dtype>(feature_extraction_proto, caffe::TEST));
feature_extraction_net->CopyTrainedLayersFrom(pretrained_binary_proto); std::string extract_feature_blob_names(argv[++arg_pos]);
std::vector<std::string> blob_names;
boost::split(blob_names, extract_feature_blob_names, boost::is_any_of(",")); std::string save_feature_dataset_names(argv[++arg_pos]);
std::vector<std::string> dataset_names;
boost::split(dataset_names, save_feature_dataset_names,
boost::is_any_of(","));
CHECK_EQ(blob_names.size(), dataset_names.size()) <<
" the number of blob names and dataset names must be equal";
size_t num_features = blob_names.size(); for (size_t i = ; i < num_features; i++) {
CHECK(feature_extraction_net->has_blob(blob_names[i]))
<< "Unknown feature blob name " << blob_names[i]
<< " in the network " << feature_extraction_proto;
} int num_mini_batches = atoi(argv[++arg_pos]); std::vector<shared_ptr<db::DB> > feature_dbs;
std::vector<shared_ptr<db::Transaction> > txns;
const char* db_type = argv[++arg_pos];
for (size_t i = ; i < num_features; ++i) {
LOG(INFO)<< "Opening dataset " << dataset_names[i];
shared_ptr<db::DB> db(db::GetDB(db_type));
db->Open(dataset_names.at(i), db::NEW);
feature_dbs.push_back(db);
shared_ptr<db::Transaction> txn(db->NewTransaction());
txns.push_back(txn);
} LOG(ERROR)<< "Extacting Features"; Datum datum;
const int kMaxKeyStrLength = ;
char key_str[kMaxKeyStrLength];
std::vector<Blob<float>*> input_vec;
std::vector<int> image_indices(num_features, );
for (int batch_index = ; batch_index < num_mini_batches; ++batch_index) {
feature_extraction_net->Forward(input_vec);
for (int i = ; i < num_features; ++i) {
const shared_ptr<Blob<Dtype> > feature_blob = feature_extraction_net
->blob_by_name(blob_names[i]);
int batch_size = feature_blob->num();
int dim_features = feature_blob->count() / batch_size;
const Dtype* feature_blob_data;
for (int n = ; n < batch_size; ++n) {
datum.set_height(feature_blob->height());
datum.set_width(feature_blob->width());
datum.set_channels(feature_blob->channels());
datum.clear_data();
datum.clear_float_data();
feature_blob_data = feature_blob->cpu_data() +
feature_blob->offset(n);
for (int d = ; d < dim_features; ++d) {
datum.add_float_data(feature_blob_data[d]);
}
int length = snprintf(key_str, kMaxKeyStrLength, "%010d",
image_indices[i]);
string out;
CHECK(datum.SerializeToString(&out));
txns.at(i)->Put(std::string(key_str, length), out);
++image_indices[i];
if (image_indices[i] % == ) {
txns.at(i)->Commit();
txns.at(i).reset(feature_dbs.at(i)->NewTransaction());
LOG(ERROR)<< "Extracted features of " << image_indices[i] <<
" query images for feature blob " << blob_names[i];
}
} // for (int n = 0; n < batch_size; ++n)
} // for (int i = 0; i < num_features; ++i)
} // for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index)
// write the last batch
for (int i = ; i < num_features; ++i) {
if (image_indices[i] % != ) {
txns.at(i)->Commit();
}
LOG(ERROR)<< "Extracted features of " << image_indices[i] <<
" query images for feature blob " << blob_names[i];
feature_dbs.at(i)->Close();
} LOG(ERROR)<< "Successfully extracted the features!";
return ;
}

caffe: test code for Deep Learning approach的更多相关文章

  1. 论文笔记之:From Facial Parts Responses to Face Detection: A Deep Learning Approach

    From Facial Parts Responses to Face Detection: A Deep Learning Approach ICCV 2015 从以上两张图就可以感受到本文所提方法 ...

  2. 《3-D Deep Learning Approach for Remote Sensing Image Classification》论文笔记

    论文题目<3-D Deep Learning Approach for Remote Sensing Image Classification> 论文作者:Amina Ben Hamida ...

  3. 论文阅读 | DeepDrawing: A Deep Learning Approach to Graph Drawing

    作者:Yong Wang, Zhihua Jin, Qianwen Wang, Weiwei Cui, Tengfei Ma and Huamin Qu 本文发表于VIS2019, 来自于香港科技大学 ...

  4. (转) Awesome Deep Learning

    Awesome Deep Learning  Table of Contents Free Online Books Courses Videos and Lectures Papers Tutori ...

  5. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  6. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  7. 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  8. (转) Awesome - Most Cited Deep Learning Papers

    转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers ...

  9. 深度学习阅读列表 Deep Learning Reading List

    Reading List List of reading lists and survey papers: Books Deep Learning, Yoshua Bengio, Ian Goodfe ...

随机推荐

  1. LOGISTIC REGRESSION

    In logistic regression we learn a family of functions

  2. IIS 6.0 401 错误

    1.错误号401.1 症状:HTTP 错误 401.1 - 未经授权:访问由于凭据无效被拒绝 分析:  由于用户匿名访问使用的账号(默认是IUSR_机器名)被禁用,或者没有权限访问计算机,将造成用户无 ...

  3. js 弹出div窗口 可移动 可关闭 (转)

    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  4. Oge中Mesh的渲染流程详述

    转自:http://blog.csdn.net/yanonsoftware/article/details/1041396 首先一个Entity对象必须Attach到一个SceneNode. 1.创建 ...

  5. C++语法疑点

    1函数模板不支持偏特化 2类内部的typedef 必须放在最前面,不然没法用: 疑问:为什么类声明处定义的函数体中能出现在后面在声明的成员变量??因为C++对于成员函数函数体的解析是放在整个类声明完毕 ...

  6. STL中的lower_bound和upper_bound的理解

    STL迭代器表述范围的时候,习惯用[a, b),所以lower_bound表示的是第一个不小于给定元素的位置 upper_bound表示的是第一个大于给定元素的位置. 譬如,值val在容器内的时候,从 ...

  7. 新浪微博sdk bug

    最近在做一个 iOS 的 cocos2d-x 项目接入新浪微博 SDK 的时候被“坑”了,最后终于顺利的解决了.发现网上也有不少人遇到一样的问题,但是能找到的数量有限的解决办法写得都不详细,很难让人理 ...

  8. POJ 2385 DP

    题意:在苹果树下,初始在第一棵树下,告诉你在第几秒的时候,那棵树下会落下苹果,告诉最多能移动的次数,然后来回移动,求能得到的最大的苹果数目. 思路:三维DP,d[第i秒][已经移动j次][当前在(1, ...

  9. AmazeUI基本样式

    AmazeUI是一个轻量级.Mobile first的前端框架,基于开源社区流行的前端框架编写. Normalize AmazeUI使用了normalize.css,但做了些调整:html添加了-we ...

  10. Smart210学习记录----beep linux字符设备驱动

    今天搞定了beep linux字符设备驱动,心里还是很开心的,哈哈...但在完成的过程中却遇到了一个非常棘手的问题,花费了我大量的时间,,,, 还是把问题描述一下吧,好像这个问题很普遍的,网上许多解决 ...