poj 1062

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 39437   Accepted: 11432

Description

年轻的探险家来到了一个印第安部落里。在那里他和酋长的女儿相爱了,于是便向酋长去求亲。酋长要他用10000个金币作为聘礼才答应把女儿嫁给他。探险家拿不出这么多金币,便请求酋长降低要求。酋长说:"嗯,如果你能够替我弄到大祭司的皮袄,我可以只要8000金币。如果你能够弄来他的水晶球,那么只要5000金币就行了。"探险家就跑到大祭司那里,向他要求皮袄或水晶球,大祭司要他用金币来换,或者替他弄来其他的东西,他可以降低价格。探险家于是又跑到其他地方,其他人也提出了类似的要求,或者直接用金币换,或者找到其他东西就可以降低价格。不过探险家没必要用多样东西去换一样东西,因为不会得到更低的价格。探险家现在很需要你的帮忙,让他用最少的金币娶到自己的心上人。另外他要告诉你的是,在这个部落里,等级观念十分森严。地位差距超过一定限制的两个人之间不会进行任何形式的直接接触,包括交易。他是一个外来人,所以可以不受这些限制。但是如果他和某个地位较低的人进行了交易,地位较高的的人不会再和他交易,他们认为这样等于是间接接触,反过来也一样。因此你需要在考虑所有的情况以后给他提供一个最好的方案。 
为了方便起见,我们把所有的物品从1开始进行编号,酋长的允诺也看作一个物品,并且编号总是1。每个物品都有对应的价格P,主人的地位等级L,以及一系列的替代品Ti和该替代品所对应的"优惠"Vi。如果两人地位等级差距超过了M,就不能"间接交易"。你必须根据这些数据来计算出探险家最少需要多少金币才能娶到酋长的女儿。 

Input

输入第一行是两个整数M,N(1 <= N <= 100),依次表示地位等级差距限制和物品的总数。接下来按照编号从小到大依次给出了N个物品的描述。每个物品的描述开头是三个非负整数P、L、X(X < N),依次表示该物品的价格、主人的地位等级和替代品总数。接下来X行每行包括两个整数T和V,分别表示替代品的编号和"优惠价格"。

Output

输出最少需要的金币数。

Sample Input

1 4
10000 3 2
2 8000
3 5000
1000 2 1
4 200
3000 2 1
4 200
50 2 0

Sample Output

5250

对于从u点出发到w点的路径中,他会跟很多等级的人交易,然而必须满足在路径中的点等级差不很超过一个M值,那么怎么对这样的问题求解呢?我没看报告前是很疑惑的!

假设如果给这条路径加上一个附加条件的话,情况可能就有所变化了,要求最短路中的所有点的等级在一个区间内[a,b],如果能够很好的给出这个区间的话,只要对图中的点进行上筛选即可了。

这个区间的确定显然不是随便的,那么就要根据一定的条件了,从题意中我们知道,最后所有的最短路都会汇集在1号点,也就是说1号点是所有最短路都存在的点,好了,这个条件很重要,这样我们就可以依照1号点来给定区间了,比如1号点等级为lev,那么也就是说在所有最短路的这些点都必须满足在[lev-M,lev+M]这个区间里面。好了,可能你会迫不及待将这个区间作为最后的区间,在想想,如果在这个区间内出现的两个点的他们之间的等级差超过了M值(这是存在的),显然,不符合题意了,所以这个区间还有继续缩小。其实只要稍微动动脑子,就可以找出这样的区间[lev-M,lev],[lev-M+1,lev+1],... ...,[lev,lev+M],首先这些区间都满足大区间的条件,而且如果将这些区间的某个作为筛选条件的话,在这个区间内的任意两个点的等级都不会超过M值,这就是很特别的地方了(转)

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
const int INF=;
int maps[][],v[],d[],N;
int l[],p[],in[]; int Dijkstra()
{
memset(v,,sizeof(v));
int i,j,k,mini; for(i=;i<=N;i++)
d[i]=INF;
d[]=;
for(i=;i<=N;i++)
{
mini=INF;k=-;
for(j=;j<=N;j++)
{
if(!v[j] && in[j] && d[j]<mini)
mini=d[k=j];
}
if(mini==INF)
break; v[k]=;
for(j=;j<=N;j++)
{
if(!v[j] && in[j] && d[k]+maps[k][j]<d[j])
{
d[j]=d[k]+maps[k][j];
}
}
}
mini=INF;
for(i=;i<=N;i++)
{
if(d[i]+p[i]<mini && v[i])
mini=d[i]+p[i];
}
return mini;
} int main()
{
int m,x,T,V;
int i,j,minicost;
while(scanf("%d %d",&m,&N)!=EOF)
{ for(i=;i<=N;i++)
{
for(j=;j<=N;j++)
{
maps[i][j]=( i==j ? :INF);
}
}
for(i=;i<=N;i++)
{
scanf("%d %d %d",&p[i],&l[i],&x);
for(j=;j<=x;j++)
{
scanf("%d %d",&T,&V);
if(maps[i][T]>V)
{
maps[i][T]=V;
}
}
}
int lev=l[],coc;
minicost=INF;
for(i=;i<=m;i++)
{
memset(in,,sizeof(in));
for(j=;j<=N;j++)
{
if(l[]-m+i<=l[j] && l[j]<=l[]+i)
in[j]=;
}
coc=Dijkstra();
if(coc<minicost)
minicost=coc;
}
printf("%d\n",minicost);
}
return ;
}

昂贵的聘礼 Dijkstra法的更多相关文章

  1. 昂贵的聘礼(dijkstra)

    昂贵的聘礼 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 38549   Accepted: 11158 Descripti ...

  2. POJ - 1062 昂贵的聘礼 Dijkstra

    思路:构造最短路模型,抽象出来一个源点,这个源点到第i个点的费用就是price[i],然后就能抽象出图来,终点是1. 任意两个人之间都有等级限制,就枚举所有最低等级限制,然后将不再区间[min_lev ...

  3. POJ-1062 昂贵的聘礼---Dijkstra+枚举上界

    题目链接: https://vjudge.net/problem/POJ-1062 题目大意: 中文题 思路: 1是终点,可以额外添加一个源点0,0到任意一节点的距离就是这个点的money,最终求的是 ...

  4. 最短路(Dijkstra) POJ 1062 昂贵的聘礼

    题目传送门 /* 最短路:Dijkstra算法,首先依照等级差距枚举“删除”某些点,即used,然后分别从该点出发生成最短路 更新每个点的最短路的最小值 注意:国王的等级不一定是最高的:) */ #i ...

  5. POJ1062昂贵的聘礼(dijkstra)

    昂贵的聘礼 题目大意是说有N个物品,每个物品都有自己的价格,但同时某些物品也可以由其他的(可能不止一个)替代品,这些替代品的价格比较“优惠”,问怎么样选取可以让你的花费最少来购买到物品1 由于有N个物 ...

  6. POJ1062昂贵的聘礼(经典) 枚举区间 +【Dijkstra】

    <题目链接>                   昂贵的聘礼 Description 年轻的探险家来到了一个印第安部落里.在那里他和酋长的女儿相爱了,于是便向酋长去求亲.酋长要他用1000 ...

  7. (最短路 dijkstra)昂贵的聘礼 -- poj -- 1062

    链接: http://poj.org/problem?id=1062 昂贵的聘礼 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions ...

  8. poj 1062 昂贵的聘礼 (dijkstra最短路)

    题目链接:http://poj.org/problem?id=1062 昂贵的聘礼 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  9. POJ - 1062 昂贵的聘礼(最短路Dijkstra)

    昂贵的聘礼 Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %I64d & %I64u SubmitStatus Descr ...

随机推荐

  1. 夺命雷公狗ThinkPHP项目之----企业网站14之文章修改页的完成

    这个其实也是挺容易的,我们思路先将栏目页给遍历出来: 这里用了catTree的方法,因为我们要对遍历出来的数据进行排序的,然后来到前端进行完成列表: <!doctype html> < ...

  2. 夺命雷公狗---DEDECMS----13dedecms首页的完成

    我们的dedecms搭建起来后直接复制templets的目录复制一份,如下所示: 然后进入templets目录里面,然后再将default里面的东西都给干掉,然后将我们预先准备好的首页放进来,代码如下 ...

  3. Image对象及其子类BufferedImage

    (1)java.awt.Image图像类是抽象类,提供获得绘图对象.图像缩放.选择图像平滑度等功能,声明如下: public abstract class Image extends Object { ...

  4. shell 日期加减

    shell 日期加减运算   比如今日是2012-04-22 $ date -d "+1 day" +%Y-%m-%d 2012-04-23   $ date -d "- ...

  5. linux设备驱动归纳总结(八):2.总线、设备和驱动的关系【转】

    本文转载自:http://blog.chinaunix.net/uid-25014876-id-110295.html linux设备驱动归纳总结(八):2.总线.设备和驱动的关系 xxxxxxxxx ...

  6. Java相关内容解析

    java中的反射机制是什么,有什么作用啊?要点:JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意一个方法:这种动态获取的以及动态调 ...

  7. arduino 蓝牙控制RGB LED灯

    /* 日期:2016.9.2 功能:arduino 蓝牙控制RGB LED灯 元件: 跳线公公头 * 8 rgbled, 220欧电阻 蓝牙模块 接线: 蓝牙模块VCC,GND分别接5V,GND;TX ...

  8. 【Pro ASP.NET MVC 3 Framework】.学习笔记.11.ASP.NET MVC3的细节:概览MVC项目

    书Adam The Definitive Guide to HTML5 Adam Applied ASP.NET 4 in Context and Pro ASP.NET 4 到此为止,我们已经学了为 ...

  9. ectouch第六讲 之表常用链接

    ECTouch1.0 常用链接:精品属性商品mobile/index.php?m=default&c=category&type=best 新品属性商品mobile/index.php ...

  10. IOS中两个view的切换

    在ios中,rootview为PassWordViewController,secondview为SecondViewController,实现在rootview中听过一个跳转按钮实现跳转到secon ...