Geometric Progression

Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and a sequence a, consisting of n integers.

He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common ratio k.

A subsequence of length three is a combination of three such indexes i1, i2, i3, that 1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

Input

The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.

The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — elements of the sequence.

Output

Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

Sample Input

Input
5 2
1 1 2 2 4
Output
4
Input
3 1
1 1 1
Output
1
Input
10 3
1 2 6 2 3 6 9 18 3 9
Output
6

Hint

In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

 #include <stdio.h>
#include <string.h>
#include <map>
#include <algorithm>
using namespace std; map <long long,long long> a;
map <long long,long long> b;
long long y[];
int main()
{
long long n,k,o;
long long i,j,x,m;
long long s;
while(scanf("%I64d %I64d",&n,&k)!=EOF)
{
s=,o=,m=;
a.clear();
b.clear();
if(k==)
{
for(i=;i<=n;i++)
{
scanf("%I64d",&x);
a[x]++;
if(a[x]==)
{
m++;
y[m]=x;
}
}
//prlong longf("*%d %d\n",a[y[1]],m);
for(i=;i<=m;i++)
{
s=s+(a[y[i]]*(a[y[i]]-)/)*(a[y[i]]-)/;
}
}
else
{
for(i=;i<=n;i++)
{
scanf("%I64d",&x);
if(x==)
o++;
a[x]++;
if(x%k== && x/k!=)
{
s=s+b[x/k];
b[x]=a[x/k]+b[x];
}
}
s=s+o*(o-)/*(o-)/;
}
printf("%I64d\n",s);
}
return ;
}

CodeForces 567C Geometric Progression的更多相关文章

  1. CodeForces 567C. Geometric Progression(map 数学啊)

    题目链接:http://codeforces.com/problemset/problem/567/C C. Geometric Progression time limit per test 1 s ...

  2. Codeforces 567C - Geometric Progression - [map维护]

    题目链接:https://codeforces.com/problemset/problem/567/C 题意: 给出长度为 $n$ 的序列 $a[1:n]$,给出公比 $k$,要求你个给出该序列中, ...

  3. Codeforces 567C Geometric Progression(思路)

    题目大概说给一个整数序列,问里面有几个包含三个数字的子序列ai,aj,ak,满足ai*k*k=aj*k=ak. 感觉很多种做法的样子,我想到这么一种: 枚举中间的aj,看它左边有多少个aj/k右边有多 ...

  4. CodeForces 567C Geometric Progression 类似dp的递推统计方案数

    input n,k 1<=n,k<=200000 a1 a2 ... an 1<=ai<=1e9 output 数组中选三个数,且三个数的下标严格递增,凑成形如b,b*k,b* ...

  5. CF 567C Geometric Progression

    题目大意:输入两个整数 n 和 k ,接下来输入n个整数组成的序列.求该序列中三个数 满足条件的子串个数(要求字串由三个整数a,b,c组成,其中 c = k * b = k * k * a). 思路: ...

  6. Codeforces 567C:Geometric Progression(DP)

    time limit per test : 1 second memory limit per test : 256 megabytes input : standard input output : ...

  7. Codeforces Round #Pi (Div. 2) C. Geometric Progression map

    C. Geometric Progression Time Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  8. map Codeforces Round #Pi (Div. 2) C. Geometric Progression

    题目传送门 /* 题意:问选出3个数成等比数列有多少种选法 map:c1记录是第二个数或第三个数的选法,c2表示所有数字出现的次数.别人的代码很短,思维巧妙 */ /***************** ...

  9. Codeforces Round #Pi (Div. 2) C. Geometric Progression

    C. Geometric Progression time limit per test 1 second memory limit per test 256 megabytes input stan ...

随机推荐

  1. Mysql索引总结(一)

    数据库开发中索引的使用占了很重要的位置,好的索引会使数据库的读写效率加倍,烂的索引则会拖累整个系统甚至引发灾难. 索引分三类: index ----普通的索引,数据可以重复 unique ----唯一 ...

  2. 夺命雷公狗jquery---5可见选择器

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  3. ssh & display

    在Windows下用ssh连接服务器的话putty是一个小巧而且实用的工具,如果想要图形界面,可以使用X工具配合putty. 或者直接使用xmanager enterprise,非 常方便. 如果在U ...

  4. zw版【转发·台湾nvp系列Delphi例程】HALCON CheckDifference

    zw版[转发·台湾nvp系列Delphi例程]HALCON CheckDifference unit Unit1;interfaceuses Windows, Messages, SysUtils, ...

  5. 为什么在我眼里你是一只傻逼——傻逼“常所用”句型之(2)——“当当网的就有XXX人评论,YYY%的推荐”

    A:这东西里面尽是大粪. B:这东西当当网的就有325人评论,98.8%的推荐.京东的整体评论是五星,37人评价,31人给好评,1人差评,5人中评:亚马逊有6条好评,1条中评. http://news ...

  6. phaser运用中,dota战术板

    首发:个人博客,更新&纠错&回复 还是没想好用phaser做个啥小游戏好,以每年春节打dota的这两伙人为基础是肯定的,但游戏具体咋做还没头绪. 暂时试着做了个卡通版dota地图,可以 ...

  7. PHP memcached 扩展的安装

    PHP memcached 扩展的安装 1.下载相关的源码包(软件版本自己选择) memcached-1.4.15 , http://memcached.org/ //Memcached服务端. me ...

  8. DLL:加载错误

    一:试图加载格式不正确的程序 把目标平台Any CPU 设置为X86:

  9. JavaEE基础(二十一)/IO流

    1.IO流(字符流FileReader) 1.字符流是什么 字符流是可以直接读写字符的IO流 字符流读取字符, 就要先读取到字节数据, 然后转为字符. 如果要写出字符, 需要把字符转为字节再写出. 2 ...

  10. C#委托之泛型

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Cons ...