CodeForces 567C Geometric Progression
Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
Description
Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and a sequence a, consisting of n integers.
He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common ratio k.
A subsequence of length three is a combination of three such indexes i1, i2, i3, that 1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.
A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.
Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.
Input
The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.
The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — elements of the sequence.
Output
Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.
Sample Input
5 2
1 1 2 2 4
4
3 1
1 1 1
1
10 3
1 2 6 2 3 6 9 18 3 9
6
Hint
In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.
#include <stdio.h>
#include <string.h>
#include <map>
#include <algorithm>
using namespace std; map <long long,long long> a;
map <long long,long long> b;
long long y[];
int main()
{
long long n,k,o;
long long i,j,x,m;
long long s;
while(scanf("%I64d %I64d",&n,&k)!=EOF)
{
s=,o=,m=;
a.clear();
b.clear();
if(k==)
{
for(i=;i<=n;i++)
{
scanf("%I64d",&x);
a[x]++;
if(a[x]==)
{
m++;
y[m]=x;
}
}
//prlong longf("*%d %d\n",a[y[1]],m);
for(i=;i<=m;i++)
{
s=s+(a[y[i]]*(a[y[i]]-)/)*(a[y[i]]-)/;
}
}
else
{
for(i=;i<=n;i++)
{
scanf("%I64d",&x);
if(x==)
o++;
a[x]++;
if(x%k== && x/k!=)
{
s=s+b[x/k];
b[x]=a[x/k]+b[x];
}
}
s=s+o*(o-)/*(o-)/;
}
printf("%I64d\n",s);
}
return ;
}
CodeForces 567C Geometric Progression的更多相关文章
- CodeForces 567C. Geometric Progression(map 数学啊)
题目链接:http://codeforces.com/problemset/problem/567/C C. Geometric Progression time limit per test 1 s ...
- Codeforces 567C - Geometric Progression - [map维护]
题目链接:https://codeforces.com/problemset/problem/567/C 题意: 给出长度为 $n$ 的序列 $a[1:n]$,给出公比 $k$,要求你个给出该序列中, ...
- Codeforces 567C Geometric Progression(思路)
题目大概说给一个整数序列,问里面有几个包含三个数字的子序列ai,aj,ak,满足ai*k*k=aj*k=ak. 感觉很多种做法的样子,我想到这么一种: 枚举中间的aj,看它左边有多少个aj/k右边有多 ...
- CodeForces 567C Geometric Progression 类似dp的递推统计方案数
input n,k 1<=n,k<=200000 a1 a2 ... an 1<=ai<=1e9 output 数组中选三个数,且三个数的下标严格递增,凑成形如b,b*k,b* ...
- CF 567C Geometric Progression
题目大意:输入两个整数 n 和 k ,接下来输入n个整数组成的序列.求该序列中三个数 满足条件的子串个数(要求字串由三个整数a,b,c组成,其中 c = k * b = k * k * a). 思路: ...
- Codeforces 567C:Geometric Progression(DP)
time limit per test : 1 second memory limit per test : 256 megabytes input : standard input output : ...
- Codeforces Round #Pi (Div. 2) C. Geometric Progression map
C. Geometric Progression Time Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...
- map Codeforces Round #Pi (Div. 2) C. Geometric Progression
题目传送门 /* 题意:问选出3个数成等比数列有多少种选法 map:c1记录是第二个数或第三个数的选法,c2表示所有数字出现的次数.别人的代码很短,思维巧妙 */ /***************** ...
- Codeforces Round #Pi (Div. 2) C. Geometric Progression
C. Geometric Progression time limit per test 1 second memory limit per test 256 megabytes input stan ...
随机推荐
- switch结构2016/03/08
Switch 03/08 一.结构 switch(){ case *: ;break;……default: ;brek;} 练习:输入一个日期,判断这一年第几天? Console.Write(&q ...
- 帮初学者改代码——有多少青春可以挥霍之“c语言 多重排序”
原文:“c语言 多重排序” 原代码: #include<stdio.h> #include<string.h> struct A { char name[100]; int g ...
- sp_executesql的执行计划会被重用(转载)
前一段时间,给一位朋友公司做咨询,看到他们的很多的存储过程都存在动态sql语句执行,sp_executesql,即使在没有动态表名,动态字段名的情况下仍然使用sp_executesql,这个做法是不太 ...
- Tomcat内存溢出解决办法
使用Java程序从数据库中查询大量的数据时出现异常:java.lang.OutOfMemoryError: Java heap space在JVM中如果98%的时间是用于GC且可用的 Heap siz ...
- android 项目学习随笔十六( 广告轮播条播放)
广告轮播条播放 if (mHandler == null) {//在此初始化mHandler , 保证消息不重复发送 mHandler = new Handler() { public void ha ...
- Creater中选择一行的方法
1. 在表布局中增加一单选钮列,给单选钮的属性name任意设定一个值.2. 选择单选钮对应列,将其selectID设为单选钮的ID;将onclick设为setTimeout('initAllRow ...
- javaWeb 使用jsp标签进行防盗链
/** * 1.新建类继承SimpleTagSupport * 新建2个属性, 添加对应的set方法 * 覆盖doTag()方法 */ import java.io.IOException; impo ...
- Quartz2D简介及基本线条绘制
* Quartz2D简介 1.什么是Quartz2D? 他是一个二维的绘图引擎,同时支持iOS和Mac系统 2.Quartz2D能完成的工作 画基本线条,绘制文字,图片,截图,自定义UIView. 3 ...
- ACE的接受器(Acceptor)和连接器(Connector):连接建立模式
ACE_Acceptor工厂的open()方法,或是它的缺省构造器(它实际上会调用open()方法),来开始被动侦听连接.当接受器工厂的open()方法被调用时,如果反应堆单体还没有被实例化,open ...
- 使用percona xtradb cluster的IST方式添加新节点
使用percona xtradb cluster的IST(Incremental State Transfer)特性添加新节点,防止新节点加入时使用SST(State SnapShop Transfe ...