1003: [ZJOI2006]物流运输

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 6331  Solved: 2610
[Submit][Status][Discuss]

Description

  物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转
停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种
因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是
修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本
尽可能地小。

Input

  第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示
每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编
号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来
一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1< = a < = b < = n)。表示编号为P的码
头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一
条从码头A到码头B的运输路线。

Output

  包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

Sample Input

5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5

Sample Output

32
//前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32
 
首先看到题目会想到最短路。。。
设cost[i][j]表示从第i天到第j天的每天的最小花费,就是用spfa求一个最短路。
设f[i]表示前i天的最小总花费,则状态转移方程:f[i]=min{f[j]+cost[j+1][i]*(i-j)+k}  (0<=j<i)  初始值为f[i]=cost[1][i]*i,求出f[n]就是答案
特别提醒,f数组要设为long long,而且在计算f[i]=cost[1][i]*i时也要转为long long
 
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<algorithm>
using namespace std;
struct node{int y,next,v;}e[];
long long n,m,k,p,d,len,Link[],vis[],check[],dis[],f[],q[],cost[][],flag[][];
inline int read()
{
int x=,f=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getchar();}
while(isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
void insert(int xx,int yy,int vv)
{
e[++len].next=Link[xx];
Link[xx]=len;
e[len].y=yy;
e[len].v=vv;
}
int spfa(int a,int b)
{
memset(vis,,sizeof(vis));
memset(dis,/,sizeof(dis));
memset(check,,sizeof(check));
int head=,tail=;
q[++tail]=; vis[tail]=; dis[tail]=;
for(int i=;i<=m;i++)
for(int j=a;j<=b;j++)
if(flag[i][j]) check[i]=;
while(++head<=tail)
{
int now=q[head];
for(int i=Link[now];i;i=e[i].next)
{
if(!check[e[i].y]&&dis[now]+e[i].v<dis[e[i].y])
{
dis[e[i].y]=dis[now]+e[i].v;
if(!vis[e[i].y])
{
q[++tail]=e[i].y;
vis[e[i].y]=;
}
}
}
vis[now]=;
}
return dis[m];
}
int main()
{
//freopen("cin.in","r",stdin);
//freopen("cout.out","w",stdout);
n=read(); m=read(); k=read(); p=read();
for(int i=;i<=p;i++)
{
int x=read(),y=read(),z=read();
insert(x,y,z); insert(y,x,z);
}
d=read();
for(int i=;i<=d;i++)
{
int x=read(),y=read(),z=read();
for(int j=y;j<=z;j++) flag[x][j]=;
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
cost[i][j]=spfa(i,j);
for(int i=;i<=n;i++)
{
f[i]=(long long)cost[][i]*i;
for(int j=;j<i;j++)
f[i]=min(f[i],f[j]+cost[j+][i]*(i-j)+k);
}
printf("%lld",f[n]);
return ;
}

【bzoj1003】[ZJOI2006]物流运输的更多相关文章

  1. bzoj1003 [ZJOI2006]物流运输

    1003: [ZJOI2006]物流运输 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 6300  Solved: 2597[Submit][Stat ...

  2. bzoj1003[ZJOI2006]物流运输trans

    1003: [ZJOI2006]物流运输trans Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常 ...

  3. bzoj1003: [ZJOI2006]物流运输(DP+spfa)

    1003: [ZJOI2006]物流运输 题目:传送门 题解: 可以用spfa处理出第i天到第j都走这条路的花费,记录为cost f[i]表示前i天的最小花费:f[i]=min(f[i],f[j-1] ...

  4. BZOJ1003: [ZJOI2006] 物流运输 trans

    物流运输--看了神犇的题解,就是dp+最短路,设f[i]为1~i天的最少花费,那么 dp[i]=min(cost[1,i],min{dp[j]+cost[j+1,i]+K,1≤j<i}) 就是从 ...

  5. [bzoj1003][ZJOI2006][物流运输] (最短路+dp)

    Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...

  6. [BZOJ1003] [ZJOI2006] 物流运输trans (最短路 & dp)

    Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格 ...

  7. 2018.09.02 bzoj1003: [ZJOI2006]物流运输(dp+最短路转移)

    传送门 dp好题. 每一天要变更路线一定还是走最短路. 所以l~r天不变更路线的最优方案就是把l~r天所有不能走的点都删掉再求最短路.显然是可以dp的. 设f[i]表示第i天的最优花销.那么我们枚举在 ...

  8. 【动态规划】【spfa】【最短路】bzoj1003 [ZJOI2006]物流运输trans

    预处理cost[a][b] 表示第a天到第b天用同一条线路的成本. 具体转移看代码. #include<cstdio> #include<algorithm> #include ...

  9. [Bzoj1003][ZJOI2006]物流运输(spfa+dp)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1003 比较简单的dp,dp[i]为1-i天最小费用,dp方程为dp[i] = min(d ...

随机推荐

  1. JS正则表达式获取字符串中特定字符

    JS正则表达式获取字符串中得特定字符,通过replace的回调函数获取. 实现的效果:在字符串中abcdefgname='test'sddfhskshjsfsjdfps中获取name的值test  实 ...

  2. 04-树6 Complete Binary Search Tree

    完全二叉树 刚开始只发现了中序遍历是从小到大顺序的.一直在找完全二叉树的层结点间规律...放弃了 不曾想,完全二叉树的规律早就知道啊.根结点为i,其左孩子结点2*i, 右孩子结点2*i+1. 结合此两 ...

  3. AngularJs记录学习01

    <!doctype html> <html ng-app="myapp"> <head> <meta http-equiv="C ...

  4. void *p 类型,illegal indirection错误

    #include<stdio.h>int main(void) {    int i=0;    int *pint=&i;     double d=1.23;    doubl ...

  5. programming ruby

    ri #rdoc reader attr_reader attr_writer @@xx 类变量都是私有的 def 类名.xx end 类方法 [1,3,5,7].inject(0){|sum,e| ...

  6. openSUSE13.1 Yast 中所有软件图形化界面无法打开,问题原因: Ruby

    因为使用rvm安装了新的Ruby,而openSUSE13.1的YaST又是用Ruby的.....解决方案暂时没有

  7. SAP CRM 项目笔记(一) SOW(工作说明书)讨论

    前记 前两天在搜索资料时,看到一个网友在博客里面记录下了自己参于项目中的所有笔记.我觉得这个想法很不错,所以决定开笔记录下SAP CRM整个项目的实施和开发过程. 之前参加集团的SAP ERP(FI/ ...

  8. SQL30081N 检测到通信错误。正在使用的通信协议:"TCP/IP"

    环境描述: 今天在虚拟机上安装了Linux系统,并且装了DB2,但是在连接的时候遇到了个问题,百思不得其解.下面是具体问题跟解决办法 问题描述: 解决办法: 1.先ping服务器是否可以ping通. ...

  9. java下的redis操作

    Java操作redis(增删改查) Java代码 package sgh.main.powersite; import java.util.ArrayList; import java.util.Ha ...

  10. ios中怎么处理键盘挡住输入框

    //此前要遵循UITextFieldDelegate代理.并且设置该文本框为当前控制器的代理 //开始编辑的时候让整个view的高度网上移动 - (void)textFieldDidBeginEdit ...