1. 直接用limit start, count分页语句, 也是我程序中用的方法:

select * from product limit start, count

当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条)。

如下:

select * from product limit 10, 20   0.016秒
select * from product limit 100, 20 0.016秒
select * from product limit 1000, 20 0.047秒
select * from product limit 10000, 20 0.094秒

我们已经看出随着起始记录的增加,时间也随着增大, 这说明分页语句limit跟起始页码是有很大关系的,那么我们把起始记录改为40w看下(也就是记录的一般左右)

select * from product limit 400000, 20   3.229秒

再看我们取最后一页记录的时间

select * from product limit 866613, 20   37.44秒

像这种分页最大的页码页显然这种时间是无法忍受的。

从中我们也能总结出两件事情:

  1. limit语句的查询时间与起始记录的位置成正比
  2. mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用。

2. 对limit分页问题的性能优化方法

利用表的覆盖索引来加速分页查询
我们都知道,利用了索引查询的语句中如果只包含了那个索引列(覆盖索引),那么这种情况会查询很快。

因为利用索引查找有优化算法,且数据就在查询索引上面,不用再去找相关的数据地址了,这样节省了很多时间。另外Mysql中也有相关的索引缓存,在并发高的时候利用缓存就效果更好了。

在我们的例子中,我们知道id字段是主键,自然就包含了默认的主键索引。现在让我们看看利用覆盖索引的查询效果如何。

这次我们之间查询最后一页的数据(利用覆盖索引,只包含id列),如下:

select id from product limit 866613, 20 0.2秒

相对于查询了所有列的37.44秒,提升了大概100多倍的速度

那么如果我们也要查询所有列,有两种方法,一种是id>=的形式,另一种就是利用join,看下实际情况:

SELECT * FROM product WHERE ID > =(select id from product limit 866613, 1) limit 20

查询时间为0.2秒!

另一种写法

SELECT * FROM product a JOIN (select id from product limit 866613, 20) b ON a.ID = b.id

查询时间也很短!

3. 复合索引优化方法

MySql 性能到底能有多高?MySql 这个数据库绝对是适合dba级的高手去玩的,一般做一点1万篇新闻的小型系统怎么写都可以,用xx框架可以实现快速开发。可是数据量到了10万,百万至千万,他的性能还能那么高吗?一点小小的失误,可能造成整个系统的改写,甚至更本系统无法正常运行!好了,不那么多废话了。

用事实说话,看例子:

数据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引。这是一个基本的新闻系统的简单模型。现在往里面填充数据,填充10万篇新闻。最后collect 为 10万条记录,数据库表占用硬1.6G。

OK ,看下面这条sql语句:

select id,title from collect limit 1000,10;

很快;基本上0.01秒就OK,再看下面的

select id,title from collect limit 90000,10;

从9万条开始分页,结果?

8-9秒完成,my god 哪出问题了?其实要优化这条数据,网上找得到答案。看下面一条语句:

select id from collect order by id limit 90000,10;

很快,0.04秒就OK。 为什么?因为用了id主键做索引当然快。网上的改法是:

select id,title from collect where id>=(select id from collect order by id limit 90000,1) limit 10;

这就是用了id做索引的结果。可是问题复杂那么一点点,就完了。看下面的语句

select id from collect where vtype=1 order by id limit 90000,10; 很慢,用了8-9秒!

到了这里我相信很多人会和我一样,有崩溃感觉!vtype 做了索引了啊?怎么会慢呢?vtype做了索引是不错,你直接

select id from collect where vtype=1 limit 1000,10;

是很快的,基本上0.05秒,可是提高90倍,从9万开始,那就是0.05*90=4.5秒的速度了。和测试结果8-9秒到了一个数量级。

从这里开始有人提出了分表的思路,这个和dis #cuz 论坛是一样的思路。思路如下:

建一个索引表: t (id,title,vtype) 并设置成定长,然后做分页,分页出结果再到 collect 里面去找info 。 是否可行呢?实验下就知道了。

10万条记录到 t(id,title,vtype) 里,数据表大小20M左右。用

select id from t where vtype=1 order by id limit 90000,10;

很快了。基本上0.1-0.2秒可以跑完。为什么会这样呢?我猜想是因为collect 数据太多,所以分页要跑很长的路。limit 完全和数据表的大小有关的。其实这样做还是全表扫描,只是因为数据量小,只有10万才快。OK, 来个疯狂的实验,加到100万条,测试性能。加了10倍的数据,马上t表就到了200多M,而且是定长。还是刚才的查询语句,时间是0.1-0.2秒完成!分表性能没问题?

错!因为我们的limit还是9万,所以快。给个大的,90万开始

select id from t where vtype=1 order by id limit 900000,10;

看看结果,时间是1-2秒!why ?

分表了时间还是这么长,非常之郁闷!有人说定长会提高limit的性能,开始我也以为,因为一条记录的长度是固定的,mysql 应该可以算出90万的位置才对啊?可是我们高估了mysql 的智能,他不是商务数据库,事实证明定长和非定长对limit影响不大?怪不得有人说discuz到了100万条记录就会很慢,我相信这是真的,这个和数据库设计有关!

难道MySQL 无法突破100万的限制吗???到了100万的分页就真的到了极限?

答案是: NO 为什么突破不了100万是因为不会设计mysql造成的。下面介绍非分表法,来个疯狂的测试!一张表搞定100万记录,并且10G 数据库,如何快速分页!

好了,我们的测试又回到 collect表,开始测试结论是:

30万数据,用分表法可行,超过30万他的速度会慢道你无法忍受!当然如果用分表+我这种方法,那是绝对完美的。但是用了我这种方法后,不用分表也可以完美解决!

答案就是:复合索引! 有一次设计mysql索引的时候,无意中发现索引名字可以任取,可以选择几个字段进来,这有什么用呢?

开始的

select id from collect order by id limit 90000,10;

这么快就是因为走了索引,可是如果加了where 就不走索引了。抱着试试看的想法加了 search(vtype,id) 这样的索引。

然后测试

select id from collect where vtype=1 limit 90000,10;

非常快!0.04秒完成!

再测试:

select id ,title from collect where vtype=1 limit 90000,10;

非常遗憾,8-9秒,没走search索引!

再测试:search(id,vtype),还是select id 这个语句,也非常遗憾,0.5秒。

综上:如果对于有where 条件,又想走索引用limit的,必须设计一个索引,将where 放第一位,limit用到的主键放第2位,而且只能select 主键!

完美解决了分页问题了。可以快速返回id就有希望优化limit , 按这样的逻辑,百万级的limit 应该在0.0x秒就可以分完。看来mysql 语句的优化和索引时非常重要的!

MySQL百万级数据量分页查询方法及其优化的更多相关文章

  1. MySQL 百万级数据量分页查询方法及其优化

    方法1: 直接使用数据库提供的SQL语句 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N 适应场景: 适用于数据量较少的情况(元组百/千级) 原因/缺 ...

  2. MySQL大数据量分页查询方法及其优化

    MySQL大数据量分页查询方法及其优化   ---方法1: 直接使用数据库提供的SQL语句---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N---适 ...

  3. 【1】MySQL大数据量分页查询方法及其优化

    ---方法1: 直接使用数据库提供的SQL语句---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N---适应场景: 适用于数据量较少的情况(元组百/千 ...

  4. MySQL 千万 级数据量根据(索引)优化 查询 速度

    一.索引的作用 索引通俗来讲就相当于书的目录,当我们根据条件查询的时候,没有索引,便需要全表扫描,数据量少还可以,一旦数据量超过百万甚至千万,一条查询sql执行往往需要几十秒甚至更多,5秒以上就已经让 ...

  5. Mysql系列(五)—— 分页查询及问题优化

    一.用法 在Mysql中分页查询使用关键字limit.limit的语法如下: SELECT * FROM tbl LIMIT 5,10; # Retrieve rows 6-15 limit关键字带有 ...

  6. (转载)MYSQL千万级数据量的优化方法积累

    转载自:http://blog.sina.com.cn/s/blog_85ead02a0101csci.html MYSQL千万级数据量的优化方法积累 1.分库分表 很明显,一个主表(也就是很重要的表 ...

  7. MySQL分页查询的性能优化

    MySQL limit分页查询的性能优化 Mysql的分页查询十分简单,但是当数据量大的时候一般的分页就吃不消了. 传统分页查询:SELECT c1,c2,cn… FROM table LIMIT n ...

  8. mysql处理大数据量的查询速度究竟有多快和能优化到什么程度

    mysql处理大数据量的查询速度究竟有多快和能优化到什么程度 深圳-ftx(1433725026) 18:10:49  mysql有没有排名函数啊 横瓜(601069289) 18:13:06  无 ...

  9. 什么时候出现死锁,如何解决?mysql 引擎? 多个like or 查询sql如何优化?什么是常量池?for条件执行顺序

    1. 什么时候出现死锁,如何解决?mysql 引擎? 多个like or 查询sql如何优化? 资源竞争导致死锁,比如A B 同时操作两条记录,并等待对方释放锁. 优化sql, 加缓存,主从(如读写分 ...

  10. MySQL百万级数据分页查询及优化

    方法1: 直接使用数据库提供的SQL语句 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N 适应场景: 适用于数据量较少的情况(元组百/千级) 原因/缺 ...

随机推荐

  1. 推荐一款开源的API开放平台,5分钟就可以搭建企业专属的API开放门户!

    前言 在过去的十年中,企业API治理并未受到广泛关注.然而,随着时间的推进,特别是在近几年,企业技术管理者对API治理的重视程度显著提高,开始将API视为企业资产的重要组成部分.API不再仅仅是技术层 ...

  2. 网络波动下的救星:ToDesk云电脑性能测试,以赛博朋克2077、巫师3为例

    随着网络技术的不断发展,云电脑作为一种新兴的云端计算机逐渐进入大众视野.对于游戏玩家而言,云电脑不仅解决了高配置电脑价格昂贵的问题,还让玩家在任何网络环境下随时随地享受高性能的游戏体验. 特别是在网络 ...

  3. .NET使用OllamaSharp实现大模型推理对话的简单演示

      前提条件:请确保你本地已经安装了ollama以及有关本地离线模型.或者已有远程模型环境等.如果没有,请自行部署.如果需要帮助,可以文末获取联系方式咨询.由于部署离线大模型过于简单,在线资料也很多, ...

  4. 【原创】dell戴尔笔记本充电头4530改装typeC口过程记录笔记本电源改装c口三路接线定义指南(图解)

    在淘宝淘一个备用笔记本电脑,要求便携能用,最重要便宜(如果不便宜买了就想高价卖了) 选择了xps13 L322x,键盘屏幕有瑕疵,打折下来价格170左右,换了个键盘20.整体重量1.3kg左右,大小A ...

  5. 科技论文在methodology部分应该使用什么语态?

    什么神奇的事情,在计算机领域的论文中,如果没有特殊的必要非要用过去式,那么一律使用一般现在时,十分神奇. 或许在计算机领域论文中这一点比较特殊,也可能是大家都这么用也就这样了. 总结来说,在计算机领域 ...

  6. [异常笔记] zookeeper集群启动异常:Error contacting service. It is probably not running.

    報錯信息 zookeeper服務已經啓動,但是狀態是Error contacting service. It is probably not running. 2021-02-23 21:00:41, ...

  7. BIMFCE选择全量绘制

    var webAppConfig = new Glodon.Bimface.Application.WebApplication3DConfig(); webAppConfig.domElement ...

  8. CodeForces - 1336A Linova and Kingdom

    CodeForces - 1336A 就差一点点,很可惜,少发现个很显而易见的结论 就是一个点的价值,实际上就是(这个点的深度 - 之后的点的数目) 就是 \(depth_i - size_i\) 然 ...

  9. sqli注入之sqlmap

    善于使用google hacking的搜索语法不失为一种有效的挖洞方法. 利用google浏览器inurl搜索语法寻找可能sql注入的php网站url inrul:productInfo.php?id ...

  10. 七、FreeRTOS学习笔记-中断管理

    FreeRTOS学习笔记-中断管理 中断:让CPU打断正常运行的程序,转而去处理紧急的事件(程序) 中断执行机制,可简单概括为三步: 1.中断请求:外设产生中断请求(GPIO外部中断.定时器中断等) ...