Solution -「CF 590E」Birthday
\(\mathscr{Description}\)
Link.
给定 \(n\) 个字符串 \(S_{1..n}\),选出其一个最大子集 \(T\),使得 \(T\) 中的字符串两两不存在包含关系。要求构造答案。
\(n\le750\),\(\sum|S|\le10^7\)。
\(\mathscr{Solution}\)
\(\subseteq\) 在 \(\{S_n\}\) 中是偏序关系,那么最长反链 \(T\) 的大小就是最小链覆盖大小。先建出 AC 自动机,通过 fail 树的相邻祖孙关系(每个点与其最深祖先的关系)建立偏序,再通过 bitset 维护传递闭包。利用经典二分图最大匹配模型就能求出 \(|T|\)。
难点在于 \(T\) 的构造。事实上,这就是普遍的构造最长反链的方法。推荐 C202044zxy 的博客。由于还没有想到 motivated 的讲解,所以直接搬前人的轮子了。(
提炼一点结论性的过程方便复习:
- 先求最大匹配。
- 最大匹配 \(\rightarrow\) 最小点覆盖,二分图上 DFS。
- 最小点覆盖 \(\rightarrow\) 最大独立集,直接取补集。
- 实点和虚点都在独立集里的点选入反链。
实现上,\(\mathcal O(n^3)\) Hungary 然后 DFS 标记一遍就行了,不需要想证明一样分很多步。(所以我还是觉得这个证明写得不自然。
\(\mathscr{Code}\)
/*+Rainybunny+*/
#include <bits/stdc++.h>
#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i)
const int MAXN = 750, MAXL = 1e7, IINF = 0x3f3f3f3f;
int n, mtc[MAXN * 2 + 5];
bool vis[MAXN * 2 + 5];
std::string str[MAXN + 5];
std::bitset<MAXN + 5> adj[MAXN + 5];
struct AhoCorasickAutomaton {
int node, ch[MAXL + 5][2], len[MAXL + 5][2], fail[MAXL + 5], bel[MAXL + 5];
int que[MAXL + 5], hd, tl;
AhoCorasickAutomaton(): node(1) {}
inline int insert(const std::string& str, const int id) {
int u = 1;
for (int c: str) {
if (!ch[u][c -= 'a']) ch[u][c] = ++node;
u = ch[u][c];
}
return bel[u] = id, u;
}
inline void build() {
hd = 1, tl = 0;
if (ch[1][0]) fail[que[++tl] = ch[1][0]] = 1;
else ch[1][0] = 1;
if (ch[1][1]) fail[que[++tl] = ch[1][1]] = 1;
else ch[1][1] = 1;
while (hd <= tl) {
int u = que[hd++];
if (ch[u][0]) fail[que[++tl] = ch[u][0]] = ch[fail[u]][0];
else ch[u][0] = ch[fail[u]][0];
if (ch[u][1]) fail[que[++tl] = ch[u][1]] = ch[fail[u]][1];
else ch[u][1] = ch[fail[u]][1];
}
}
} acam;
struct DSU {
int fa[MAXL + 5];
inline int find(const int x) {
return x == fa[x] ? x : fa[x] = find(fa[x]);
}
} dsu;
inline bool augment(const int u) {
rep (v, 1, n) if (adj[u].test(v) && !vis[v]) {
vis[v] = true;
if (!mtc[v + n] || augment(mtc[v + n])) {
mtc[v + n] = u, mtc[u] = v + n;
return true;
}
}
return false;
}
inline void mark(const int u) {
vis[u + n] = true;
rep (v, 1, n) if (adj[v].test(u) && !vis[v]) {
vis[v] = true, mark(mtc[v] - n);
}
}
int main() {
// freopen("a.in", "r", stdin);
// freopen("a.out", "w", stdout);
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
std::cin >> n;
rep (i, 1, n) std::cin >> str[i], acam.insert(str[i], i);
acam.build();
rep (i, 1, acam.node) {
if (i != 1 && !acam.bel[i]) dsu.fa[i] = acam.fail[i];
else dsu.fa[i] = i;
}
rep (i, 1, n) {
int u = 1;
for (int c: str[i]) {
u = acam.ch[u][c - 'a'];
if (acam.bel[dsu.find(u)]) adj[i].set(acam.bel[dsu.find(u)]);
}
u = acam.fail[u]; // When bel[u]=i, there's some thing wrong. Fix it.
if (acam.bel[dsu.find(u)]) adj[i].set(acam.bel[dsu.find(u)]);
}
rep (k, 1, n) rep (i, 1, n) if (adj[i].test(k)) adj[i] |= adj[k];
rep (i, 1, n) adj[i].reset(i);
int ans = n;
rep (i, 1, n) ans -= augment(i), memset(vis, false, sizeof vis);
rep (i, 1, n) if (!mtc[i + n]) mark(i);
std::cout << ans << '\n';
rep (i, 1, n) if (!vis[i] && vis[i + n]) std::cout << i << ' ';
std::cout << '\n';
return 0;
}
Solution -「CF 590E」Birthday的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
- Solution -「CF 487E」Tourists
\(\mathcal{Description}\) Link. 维护一个 \(n\) 个点 \(m\) 条边的简单无向连通图,点有点权.\(q\) 次操作: 修改单点点权. 询问两点所有可能路 ...
随机推荐
- CSPS2024题目总结
T1 决斗 签到题,考场上10min就做出来了. 我的方法是排序之后贪心打怪,就是用尽量小的怪去打现在场上最小的怪.用一个同侧双指针实现. \(O(nlogn)\). 另一种方法注意到了值域很小,可以 ...
- pyenv: no such command `virtualenv'
当执行 pyenv virtualenv 3.6.10 env_3.6.10 命令创建新的python环境时提示 pyenv: no such command `virtualenv' larryma ...
- nano编辑器保存退出
nano的编辑器保存推出 使用 ctrl x 然后提示Y N 是否保存 写入,输入Y即可 然后再Enter 确认就可以了
- CodeForces - 1336A Linova and Kingdom
CodeForces - 1336A 就差一点点,很可惜,少发现个很显而易见的结论 就是一个点的价值,实际上就是(这个点的深度 - 之后的点的数目) 就是 \(depth_i - size_i\) 然 ...
- python中的多继承理解
在python的多继承中,父类的初始化顺序遵循所谓方法解析顺序(Method Resolution Order,MRO)的机制.python使用C3线性化算法来确定多继承类的MRO: 1. 目标:创建 ...
- 基于nginx的tomcat负载均衡和集群(超简单)
今天看到"基于apache的tomcat负载均衡和集群配置 "这篇文章成为javaEye热点. 略看了一下,感觉太复杂,要配置的东西太多,因此在这里写出一种更简洁的方法. 要集群t ...
- openjdk和jdk的区别与联系
使用过LINUX的人都应该知道,在大多数LINUX发行版本里,内置或者通过软件源安装JDK的话,都是安装的openjdk,那么到底什么是openjdk,它与sun jdk有什么关系和区别呢?历史上的原 ...
- TortoiseGit之私钥配置
1.使用git命令生成公钥和私钥 ssh-keygen -t rsa -C "git邮箱账号" 三次回车,即可在~/.ssh/ 生成密钥对 id_rsa id_rsa.public ...
- PTA 那就别担心了
PTA 那就别担心了 给定一个有向无环图,给出起点\(st\)和终点\(ed\),问从起点出发的所有路径是否都能到达终点,并且让你求出从起点到终点的不同路径数量 \(DFS\)记忆化搜索 对于第一个问 ...
- python语言实现_通过端口转发实现跨网络(多网络之间)通信_science_network
本文使用python语言实现了一个端口转发的程序,该程序可以实现多网络之间的信息通信,当然这里有个前提,那就是多个网络都在一台主机上有可以连通的端口. 之所以有这个编写代码的需求,是因为最近使用的sc ...