HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)
Lucky7
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5768
Description
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes.
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes.
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi.
It is guranteed that all the pi are distinct and pi!=7.
It is also guaranteed that p1p2…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
Sample Input
2
2 1 100
3 2
5 3
0 1 100
Sample Output
Case #1: 7
Case #2: 14
Hint
For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.
Source
2016 Multi-University Training Contest 4
##题意:
对于给出的区间[x, y]找出有多少个符合要求的数:
1. 能被7整除.
2. 给出不超过15组(pi, ai),其中pi为质数;
要求找出的数x满足 x % pi != ai;
##题解:
可以先找出能被7整除但不满足条件2的数:
就得到了一组同余模方程,这里用中国剩余定理来处理.
因为只要满足任一同余方程就需要被计数,所以需要用容斥原理来做.
由于n=15,所以最多只有2^15种方程组合,用状态压缩记录每个组合对应的方程,对于每种组合跑一遍中国剩余定理,找出在区间范围内的个数,再用容斥原理累加起来(奇数个元素就加,偶数个则减).
以上思路很好想,坑点在于:由于数据规模比较大
中国剩余定理中 ans = (ans+x*w*a[i])%M; 乘法的3个因子和M的规模都可能达到longlong上限,所以一乘就可能导致爆掉longlong.
这里的解决方案是:用快速乘法取模(类似快速幂)代替上述乘法.
##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 25
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
LL _left, _right;
LL x,y,gcd;
void ex_gcd(LL a,LL b)
{
if(!b) {x=1;y=0;gcd=a;}
else {ex_gcd(b,a%b);LL temp=x;x=y;y=temp-a/b*y;}
}
int BitCount2(int n) {
int c =0 ;
for(; n; ++c) {
n &= (n -1) ;
}
return c ;
}
LL quickmul(LL a, LL b, LL mod) {
a %= mod;
LL ret = 0;
while(b) {
if(b & 1) ret = (ret + a) % mod;
b >>= 1;
a = (a + a) % mod;
}
return ret;
}
int n, m[maxn],a[maxn];
LL M;
LL China(int state)
{
LL w,ans=0; M=1;
for(int i=0;i<=n;i++)
if(!i || state&(1<<(i-1)))
M *= m[i];
for(int i=0;i<=n;i++) if(!i || state&(1<<(i-1))){
w=M/m[i];
ex_gcd(w,m[i]); while(x<0) {x+=m[i];y-=w;}
//ans=(ans+x*w*a[i])%M;
//上式乘法会爆longlong,所以需要用快速乘法来防暴.
ans = (ans + quickmul(a[i] ,quickmul(x,w,M), M)) % M;
}
LL cur = (ans+M)%M;
LL T = M;
cur = cur % T;
LL l_ans, r_ans;
if(_left <= cur) l_ans = cur;
else l_ans = _left - (_left-cur) % T + T;
if(_right < cur) return 0LL;
else if(_right == cur) return 1LL;
else r_ans = _right - (_right-cur) % T;
if(l_ans > r_ans) return 0LL;
return (r_ans-l_ans) / T + 1LL;
}
int main(int argc, char const *argv[])
{
//IN;
int t; cin >> t; int ca = 1;
while(t--)
{
cin >> n >> _left >> _right;
m[0] = 7LL; a[0] = 0LL;
for(int i=1; i<=n; i++) {
scanf("%I64d %I64d", &m[i], &a[i]);
}
LL ans = 0;
for(int i=1; i<(1<<n); i++) {
int flag = (BitCount2(i)%2? 1:0);
if(flag) ans += China(i);
else ans -= China(i);
}
LL tmp = _right/7LL - _left/7LL;
if(_left%7LL==0) tmp++;
printf("Case #%d: %I64d\n", ca++, tmp-ans);
}
return 0;
}
HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)的更多相关文章
- hdu 5768 Lucky7 中国剩余定理+容斥+快速乘
Lucky7 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...
- HDU 5768 Lucky7 (中国剩余定理+容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...
- hdu_5768_Lucky7(中国剩余定理+容斥)
题目链接:hdu_5768_Lucky7 题意: 给你一个区间,问你这个区间内是7的倍数,并且满足%a[i]不等于w[i]的数的个数 乍一看以为是数位DP,仔细看看条件,发现要用中国剩余定理,然后容斥 ...
- HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortun ...
- 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai 的数 ...
- hdu 5768 Lucky7 容斥
Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...
- HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)
分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...
- HDU 5768 Lucky7 (容斥原理 + 中国剩余定理 + 状态压缩 + 带膜乘法)
题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同 ...
- HDU 5768 Lucky7(CRT+容斥原理)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5768 [题目大意] 求出一个区间内7的倍数中,对于每个ai取模不等于bi的数的个数. [题解] 首 ...
随机推荐
- Failed to initialize monitor Thread: Unable to establish loopback connection解决方法
原因一: android中出现该异常的原因,是pid产生了冲突,将服务中的windows Firewall 服务停用就行了 原因二: http://stackoverflow.com/question ...
- 百度HTTPS加密搜索有什么用?
前段时间,我曾提到百度支持移动端HTTPS SSL加密搜索,用以保护用户隐私.最近,百度开始支持PC端HTTPS SSL加密搜索,现在可以启用 https://www.baidu.com 搜索.我很少 ...
- sql Server 的基本函数
--聚合函数 use pubs go select avg(distinct搜索 price) --算平均数 from titles where type='business' go use pubs ...
- POJ 3253 Fence Repair【二叉堆】
题意:给出n根木板,需要把它们连接起来,每一次连接的花费是他们的长度之和,问最少需要多少钱. 和上一题果子合并一样,只不过这一题用long long 学习的手写二叉堆的代码,再好好理解= = #inc ...
- 英文 数字 不换行 撑破div容器
我们在div等容器 中,如果规定了宽度,并且里面的内容不是全英文或者全数字是OK的,会自动换行,但是如果是全数字或者是全英文,则会撑破容器,如图 解决方法 word-wrap:break-wo ...
- 两个简单的python文件,实现删除本地文件夹和mongodb数据库的内容
删除本地文件夹: import os , string , datetime ; str = '/home/niuguoqin/tmp/tomcat/'; b = (datetime.datetime ...
- JavaScript备忘录-闭包
var arr = new Array(); function Person() { for (var i = 0; i < 10; i++) { //要记住,这个属性函数申明,只有立即执行才会 ...
- 调试WEB APP多设备浏览器(转)
方法:adobe shadow \ opera远程调试\ weinre adobe shadow: 我们经常使用Firefox的firebug或者Chrome的开发人员工具进行Web调试页面,J ...
- ASIHttpRequest编译不通过
转:http://blog.sina.com.cn/s/blog_67a5e47201014tof.html Undefined symbols for architecture i386: &q ...
- 修改Oracle 表空间名称 tablespace name
修改表空间名称步骤如下: 1. 使用oracle用户登录执行 $sqlplus / as sysdba 2. 执行修改表空间命令如下 SQL> alter tablespace TEST re ...