HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)
Lucky7
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5768
Description
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes.
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes.
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi.
It is guranteed that all the pi are distinct and pi!=7.
It is also guaranteed that p1p2…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
Sample Input
2
2 1 100
3 2
5 3
0 1 100
Sample Output
Case #1: 7
Case #2: 14
Hint
For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.
Source
2016 Multi-University Training Contest 4
##题意:
对于给出的区间[x, y]找出有多少个符合要求的数:
1. 能被7整除.
2. 给出不超过15组(pi, ai),其中pi为质数;
要求找出的数x满足 x % pi != ai;
##题解:
可以先找出能被7整除但不满足条件2的数:
就得到了一组同余模方程,这里用中国剩余定理来处理.
因为只要满足任一同余方程就需要被计数,所以需要用容斥原理来做.
由于n=15,所以最多只有2^15种方程组合,用状态压缩记录每个组合对应的方程,对于每种组合跑一遍中国剩余定理,找出在区间范围内的个数,再用容斥原理累加起来(奇数个元素就加,偶数个则减).
以上思路很好想,坑点在于:由于数据规模比较大
中国剩余定理中 ans = (ans+x*w*a[i])%M; 乘法的3个因子和M的规模都可能达到longlong上限,所以一乘就可能导致爆掉longlong.
这里的解决方案是:用快速乘法取模(类似快速幂)代替上述乘法.
##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 25
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
LL _left, _right;
LL x,y,gcd;
void ex_gcd(LL a,LL b)
{
if(!b) {x=1;y=0;gcd=a;}
else {ex_gcd(b,a%b);LL temp=x;x=y;y=temp-a/b*y;}
}
int BitCount2(int n) {
int c =0 ;
for(; n; ++c) {
n &= (n -1) ;
}
return c ;
}
LL quickmul(LL a, LL b, LL mod) {
a %= mod;
LL ret = 0;
while(b) {
if(b & 1) ret = (ret + a) % mod;
b >>= 1;
a = (a + a) % mod;
}
return ret;
}
int n, m[maxn],a[maxn];
LL M;
LL China(int state)
{
LL w,ans=0; M=1;
for(int i=0;i<=n;i++)
if(!i || state&(1<<(i-1)))
M *= m[i];
for(int i=0;i<=n;i++) if(!i || state&(1<<(i-1))){
w=M/m[i];
ex_gcd(w,m[i]); while(x<0) {x+=m[i];y-=w;}
//ans=(ans+x*w*a[i])%M;
//上式乘法会爆longlong,所以需要用快速乘法来防暴.
ans = (ans + quickmul(a[i] ,quickmul(x,w,M), M)) % M;
}
LL cur = (ans+M)%M;
LL T = M;
cur = cur % T;
LL l_ans, r_ans;
if(_left <= cur) l_ans = cur;
else l_ans = _left - (_left-cur) % T + T;
if(_right < cur) return 0LL;
else if(_right == cur) return 1LL;
else r_ans = _right - (_right-cur) % T;
if(l_ans > r_ans) return 0LL;
return (r_ans-l_ans) / T + 1LL;
}
int main(int argc, char const *argv[])
{
//IN;
int t; cin >> t; int ca = 1;
while(t--)
{
cin >> n >> _left >> _right;
m[0] = 7LL; a[0] = 0LL;
for(int i=1; i<=n; i++) {
scanf("%I64d %I64d", &m[i], &a[i]);
}
LL ans = 0;
for(int i=1; i<(1<<n); i++) {
int flag = (BitCount2(i)%2? 1:0);
if(flag) ans += China(i);
else ans -= China(i);
}
LL tmp = _right/7LL - _left/7LL;
if(_left%7LL==0) tmp++;
printf("Case #%d: %I64d\n", ca++, tmp-ans);
}
return 0;
}
HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)的更多相关文章
- hdu 5768 Lucky7 中国剩余定理+容斥+快速乘
Lucky7 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...
- HDU 5768 Lucky7 (中国剩余定理+容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...
- hdu_5768_Lucky7(中国剩余定理+容斥)
题目链接:hdu_5768_Lucky7 题意: 给你一个区间,问你这个区间内是7的倍数,并且满足%a[i]不等于w[i]的数的个数 乍一看以为是数位DP,仔细看看条件,发现要用中国剩余定理,然后容斥 ...
- HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortun ...
- 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai 的数 ...
- hdu 5768 Lucky7 容斥
Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...
- HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)
分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...
- HDU 5768 Lucky7 (容斥原理 + 中国剩余定理 + 状态压缩 + 带膜乘法)
题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同 ...
- HDU 5768 Lucky7(CRT+容斥原理)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5768 [题目大意] 求出一个区间内7的倍数中,对于每个ai取模不等于bi的数的个数. [题解] 首 ...
随机推荐
- distinct用法
distinct可以列出不重复的记录,对于单个字段来说distinct使用比较简单,但是对于多个字段来说,distinct使用起来会使人发狂.而且貌似也没有见到微软对distinct使用多字段的任何说 ...
- sql 2005 同义词
--> Title : SQL Server2005 Synonym的使用 --> Author : wufeng4552 --> Date : 2009-10-30 1.Sy ...
- Spring学习8-Spring事务管理
http://blog.sina.com.cn/s/blog_7ffb8dd501014e0f.html Spring学习8-Spring事务管理(注解式声明事务管理) 标签: spring注 ...
- SQL全文搜索
( select dd.*,t.RANK from crm_CustomerAnalyzeDetails dd ) as t on dd.ID = t.[key] ) union all ( sele ...
- bzoj2801
也就是一堆方程,每个方程都形如xi+xj=P 模拟代入消元即可,并且求出取值范围 遇到环就可以直接解出来,判断是否可行 由于这题比较坑爹,读入太大会RE,要cheat,就不放代码了
- bzoj1355: [Baltic2009]Radio Transmission
将原串看成是循环节的后缀加上若干个循环节,那么考虑每种情况都会发现n-next[n]就是最小循环节.(一开始总输出n...然后发现build_next连调用都没有,%%% #include<cs ...
- bzoj1927: [Sdoi2010]星际竞速
跟上一题几乎一样... #include<cstdio> #include<cstring> #include<iostream> #include<algo ...
- BZOJ3759: Hungergame
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3759 题解:只想到了两种情况必胜,没有推广T_T 先说一下我想到了两种情况: 1)异或和为0 ...
- HNOI2010弹飞绵羊
不得不说块状数组好神奇的啊!这道题的标签可是splay的启发是合并(什么高大上的东西),竟然这么轻松的就解决了! var x,y,i,j,tot,n,m,ch:longint; f,k,l,bl,go ...
- asp.net的decimal保留两位小数
C#的decimal保留两位小数 方法一: decimal d = 46.28111; string dStr = Math.Round( d,2 ).ToString(); 结果:dStr = 46 ...