HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)
Lucky7
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5768
Description
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes.
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes.
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi.
It is guranteed that all the pi are distinct and pi!=7.
It is also guaranteed that p1p2…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
Sample Input
2
2 1 100
3 2
5 3
0 1 100
Sample Output
Case #1: 7
Case #2: 14
Hint
For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.
Source
2016 Multi-University Training Contest 4
##题意:
对于给出的区间[x, y]找出有多少个符合要求的数:
1. 能被7整除.
2. 给出不超过15组(pi, ai),其中pi为质数;
要求找出的数x满足 x % pi != ai;
##题解:
可以先找出能被7整除但不满足条件2的数:
就得到了一组同余模方程,这里用中国剩余定理来处理.
因为只要满足任一同余方程就需要被计数,所以需要用容斥原理来做.
由于n=15,所以最多只有2^15种方程组合,用状态压缩记录每个组合对应的方程,对于每种组合跑一遍中国剩余定理,找出在区间范围内的个数,再用容斥原理累加起来(奇数个元素就加,偶数个则减).
以上思路很好想,坑点在于:由于数据规模比较大
中国剩余定理中 ans = (ans+x*w*a[i])%M; 乘法的3个因子和M的规模都可能达到longlong上限,所以一乘就可能导致爆掉longlong.
这里的解决方案是:用快速乘法取模(类似快速幂)代替上述乘法.
##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 25
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
LL _left, _right;
LL x,y,gcd;
void ex_gcd(LL a,LL b)
{
if(!b) {x=1;y=0;gcd=a;}
else {ex_gcd(b,a%b);LL temp=x;x=y;y=temp-a/b*y;}
}
int BitCount2(int n) {
int c =0 ;
for(; n; ++c) {
n &= (n -1) ;
}
return c ;
}
LL quickmul(LL a, LL b, LL mod) {
a %= mod;
LL ret = 0;
while(b) {
if(b & 1) ret = (ret + a) % mod;
b >>= 1;
a = (a + a) % mod;
}
return ret;
}
int n, m[maxn],a[maxn];
LL M;
LL China(int state)
{
LL w,ans=0; M=1;
for(int i=0;i<=n;i++)
if(!i || state&(1<<(i-1)))
M *= m[i];
for(int i=0;i<=n;i++) if(!i || state&(1<<(i-1))){
w=M/m[i];
ex_gcd(w,m[i]); while(x<0) {x+=m[i];y-=w;}
//ans=(ans+x*w*a[i])%M;
//上式乘法会爆longlong,所以需要用快速乘法来防暴.
ans = (ans + quickmul(a[i] ,quickmul(x,w,M), M)) % M;
}
LL cur = (ans+M)%M;
LL T = M;
cur = cur % T;
LL l_ans, r_ans;
if(_left <= cur) l_ans = cur;
else l_ans = _left - (_left-cur) % T + T;
if(_right < cur) return 0LL;
else if(_right == cur) return 1LL;
else r_ans = _right - (_right-cur) % T;
if(l_ans > r_ans) return 0LL;
return (r_ans-l_ans) / T + 1LL;
}
int main(int argc, char const *argv[])
{
//IN;
int t; cin >> t; int ca = 1;
while(t--)
{
cin >> n >> _left >> _right;
m[0] = 7LL; a[0] = 0LL;
for(int i=1; i<=n; i++) {
scanf("%I64d %I64d", &m[i], &a[i]);
}
LL ans = 0;
for(int i=1; i<(1<<n); i++) {
int flag = (BitCount2(i)%2? 1:0);
if(flag) ans += China(i);
else ans -= China(i);
}
LL tmp = _right/7LL - _left/7LL;
if(_left%7LL==0) tmp++;
printf("Case #%d: %I64d\n", ca++, tmp-ans);
}
return 0;
}
HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)的更多相关文章
- hdu 5768 Lucky7 中国剩余定理+容斥+快速乘
Lucky7 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...
- HDU 5768 Lucky7 (中国剩余定理+容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...
- hdu_5768_Lucky7(中国剩余定理+容斥)
题目链接:hdu_5768_Lucky7 题意: 给你一个区间,问你这个区间内是7的倍数,并且满足%a[i]不等于w[i]的数的个数 乍一看以为是数位DP,仔细看看条件,发现要用中国剩余定理,然后容斥 ...
- HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortun ...
- 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai 的数 ...
- hdu 5768 Lucky7 容斥
Lucky7 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...
- HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)
分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...
- HDU 5768 Lucky7 (容斥原理 + 中国剩余定理 + 状态压缩 + 带膜乘法)
题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同 ...
- HDU 5768 Lucky7(CRT+容斥原理)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5768 [题目大意] 求出一个区间内7的倍数中,对于每个ai取模不等于bi的数的个数. [题解] 首 ...
随机推荐
- objectC时间用法
#define kDEFAULT_DATE_TIME_FORMAT (@"yyyy-MM-dd HH:mm:ss") //获取当前日期,时间+(NSDate *)getCurren ...
- java匿名对象
java学习面向对象之匿名内部类 之前我们提到“匿名”这个字眼的时候,是在学习new对象的时候,创建匿名对象的时候用到的,之所以说是匿名,是因为直接创建对象,而没有把这个对象赋值给某个值,才称之为匿名 ...
- Check if KeyValuePair exists with LINQ's FirstOrDefault
http://stackoverflow.com/questions/793897/check-if-keyvaluepair-exists-with-linqs-firstordefault 问题: ...
- 查看局域网内某个ip的mac地址
首先需要ping一下对方的ip,确保本地的arp表中缓存对方的ip和mac的关系 C:\Windows\System32>ping 192.168.1.231 正在 Ping 192.168 ...
- C++ STL之deque的基本操作
前两篇博文中已经介绍了vector和list的两种容器,我们发现他们各有各的优缺点,vector在内存中连续存储,支持随机访问,但是查找和删除的效率比较低,而list在内存中是链式存储的查找和删除的效 ...
- poj 3101 Astronomy (java 分数的最小公倍数 gcd)
题目链接 要用大数,看了别人的博客,用java写的. 题意:求n个运动周期不完全相同的天体在一条直线上的周期. 分析:两个星球周期为a,b.则相差半周的长度为a*b/(2*abs(a-b)),对于n个 ...
- poj 1185 炮兵阵地(三维状态压缩dP)
题目:http://poj.org/problem?id=1185 思路: d[i][j][k]表示第i行的状态为第k个状态,第i-1行的状态为第j个状态的时候 的炮的数量. 1表示放大炮, 地形状态 ...
- android截屏:保存一个view的内容为图片并存放到SD卡
项目中偶尔会用到截屏分享,于是就有了下面这个截屏的方法~ 下面得saveImage()方法就是保存当前Activity对应的屏幕所有内容的截屏保存. private void saveImage() ...
- 配置hibernate根据实体类自动建表功能
Hibernate支持自动建表,在开发阶段很方便,可以保证hbm与数据库表结构的自动同步. 如何使用呢?很简单,只要在hibernate.cfg.xml里加上如下代码 Xml代码<propert ...
- bzoj1562
很明显是二分图匹配,关键是怎么求字典序最小 想到两种做法,首先是直接匹配,然后从第一位贪心调整 第二种是从最后一个倒着匹配,每次匹配都尽量选小的,这样一定能保证字典序最小 type node=reco ...