数理方程:Laplace变换 & 留数(更新中)
更新:25 APR 2016
Laplace变换
设函数\(f(t)\)在\(t>0\)时有定义,积分
\(F(s)=\int_0^{+\infty}f(t)e^{-st}dt \qquad (s\in \mathbb{C})\)
若在s的某一域内收敛,则称此映射为Laplace变换,记为
\(F(s)=\mathscr{L}[f(t)],\qquad f(t)=\mathscr{L}^{-1}[F(s)]\)
实际上,\(f(t)\)的Laplace变换就是\(f(t)u(t)e^{-\beta t} (\beta>0)\)取Fourier变换。
Laplace变换性质
1. 线性
2. 微分性
\(\mathscr{L}[f’(t)]=s\mathscr{L}[f(t)]-f(0)\)
\(\mathscr{L}[f^{(n)}(t)]=s^n\mathscr{L}[f(t)]-s^{n-1}f(0)-s^{n-2}f’(0)-\cdots-f^{(n-1)}(0)\)
3. 积分性
\(\mathscr{L}\left[\int_0^tf(t)dt\right]=\dfrac{1}{s}\mathscr{L}[f(t)]\)
4. 位移性质
5. 延迟性质
6. 相似性质
7. 初值定理
8. 终值定理
Laplace逆变换
利用Fourier变换可以得出
\(f(t)=\dfrac{1}{2\pi\mathrm{i}}\int_{\beta-\mathrm{i}\omega}^{\beta+\mathrm{i}\omega}F(s)e^{st}ds, t>0\)
积分成为Laplace反演积分。求此反演积分可以使用留数来计算:
若\(s_1, s_2, …, s_n\)是函数\(F(s)\)的所有奇点,且当\(s \rightarrow \infty\)时\(F(s) \rightarrow 0\),则
\(f(t)=\dfrac{1}{2\pi \mathrm{i}}\int_{\beta-\mathrm{i}\omega}^{\beta+\mathrm{i}\omega}F(s)e^{st}ds=\sum\limits_{k=1}^{n}\underset{s=s_k}{\operatorname{Res}}[F(s)e^{st}]\)
求Laplace变换的方法-留数
数理方程:Laplace变换 & 留数(更新中)的更多相关文章
- 数理方程:Fourier变换与卷积
更新:1 APR 2016 关于傅里叶级数参看数理方程:Fourier级数 Fourier变换: 对于满足Dirichlet条件的函数\(f(t)\)在其连续点处定义 \(F(\omega)=\int ...
- 利用Hough变换识别图像中的直线
引入 近期看到2015年数学建模A题太阳影子定位中的第四问,需要根据附件中视频里的直杆的太阳影子的变化确定拍摄地点.其实确定拍摄地点这个问题并不是十分困难,因为有前三问的铺垫,我们已经得出了太阳影子长 ...
- 史上最全的spark面试题——持续更新中
史上最全的spark面试题——持续更新中 2018年09月09日 16:34:10 为了九亿少女的期待 阅读数 13696更多 分类专栏: Spark 面试题 版权声明:本文为博主原创文章,遵循C ...
- 在UPDATE中更新TOP条数据以及UPDATE更新中使用ORDER BY
正常查询语句中TOP的运用: SELECT TOP 1000 * FROM MP_MemberGrade 随意更新一张表中满足条件的前N条数据: UPDATE TOP (1) MP_Member ...
- git常用命令(持续更新中)
git常用命令(持续更新中) 本地仓库操作git int 初始化本地仓库git add . ...
- Atom使用记录(持续更新中)
部分内容取自:http://www.jianshu.com/p/dd97cbb3c22d,我自己也在使用,持续更新中 Atom安装插件在窗口中File---Setting---install 在里面进 ...
- Pig基础学习【持续更新中】
*本文参考了Pig官方文档以及已有的一些博客,并加上了自己的一些知识性的理解.目前正在持续更新中.* Pig作为一种处理大规模数据的高级查询语言,底层是转换成MapReduce实现的,可以作为MapR ...
- Pig语言基础-【持续更新中】
***本文参考了Pig官方文档以及已有的一些博客,并加上了自己的一些知识性的理解.目前正在持续更新中.*** Pig作为一种处理大规模数据的高级查询语言,底层是转换成MapReduce实现的, ...
- java视频教程 Java自学视频整理(持续更新中...)
视频教程,马士兵java视频教程,java视频 1.Java基础视频 <张孝祥JAVA视频教程>完整版[RMVB](东西网) 历经5年锤炼(史上最适合初学者入门的Java基础视频)(传智播 ...
随机推荐
- gitignore无效最简单解决办法
git rm --cached 文件或者文件夹 git commit 提交 git push 提交
- GIT 中提示 please tell me who you are
如果使用git过程中出现了,please tell me who you are ,需要设置一下使用者的身份. 1.git config user.name "username" ...
- EXTJS项目实战经验总结一:日期组件的change事件:
1 依据选择的日期,加载相应的列表数据,如图: 开发说明 1 开发思路: 在日期值变化的事件中获得选择后的日期值,传给后台,然后从后台加载相应的数据 2 问题:在查看extjs2.2 的a ...
- Objective-C运行时编程 - 方法混写 Method Swizzling
摘要: 本文描述方法混写对实例.类.父类.不存在的方法等情况处理,属于Objective-C(oc)运行时(runtime)编程范围. 编程环境:Xcode 6.1.1, Yosemite,iOS 8 ...
- TCP具体解释(2):三次握手与四次挥手
TCP(Transmission Control Protocol,传输控制协议)是基于连接的协议,也就是说,在正式收发数据前,必须和对方建立可靠的连接,就好像你给别人打电话.必须等线路接通了.对方拿 ...
- [Angular2 Form] Create Radio Buttons for Angular 2 Forms
Using Radio Buttons in Angular 2 requires a basic understanding of forms as well as how their labels ...
- ios开发——错误总结篇&开发中常见错误和警告总结(四)
ios开发——开发总结&开发中常见错误和警告总结(四) 网易彩票实战总结(错误) 错误总结之类的实现 经典错误之重复定义与导入错误 经典错误关于父类的实现 通知对象: 控制器的定义 Xcode ...
- android调用系统相机拍照并保存在本地
import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import j ...
- Centos7安装杀毒软件ClamAV
Clam AntiVirus(ClamAV)是免费而且开放源代码的防毒软件,软件与病毒码的更新皆由社群免费发布.目前ClamAV主要是使用在Linux.FreeBSD等Unix-like系统架设的邮件 ...
- Using ASP.Net WebAPI with Web Forms
Asp.Net WebAPI is a framework for building RESTful HTTP services which can be used across a wide ran ...