TextRank算法提取关键词的Java实现
转载:码农场 » TextRank算法提取关键词的Java实现
谈起自动摘要算法,常见的并且最易实现的当属TF-IDF,但是感觉TF-IDF效果一般,不如TextRank好。
TextRank是在 Google的PageRank算法启发下,针对文本里的句子设计的权重算法,目标是自动摘要。它利用投票的原理,让每一个单词给它的邻居(术语称窗口) 投赞成票,票的权重取决于自己的票数。这是一个“先有鸡还是先有蛋”的悖论,PageRank采用矩阵迭代收敛的方式解决了这个悖论。TextRank也 不例外:
PageRank的计算公式:

正规的TextRank公式
正规的TextRank公式在PageRank的公式的基础上,引入了边的权值的概念,代表两个句子的相似度。

但是很明显我只想计算关键字,如果把一个单词视为一个句子的话,那么所有句子(单词)构成的边的权重都是0(没有交集,没有相似性),所以分子分母的权值w约掉了,算法退化为PageRank。所以说,这里称关键字提取算法为PageRank也不为过。
另外,如果你想提取关键句(自动摘要)的话,请参考姊妹篇《TextRank算法自动摘要的Java实现》。
TextRank的Java实现
先看看测试数据:
程序员(英文Programmer)是从事程序开发、维护的专业人员。一般将程序员分为程序设计人员和程序编码人员,但两者的界限并不非常清楚,特别是在中国。软件从业人员分为初级程序员、高级程序员、系统分析员和项目经理四大类。
我取出了百度百科关于“程序员”的定义作为测试用例,很明显,这段定义的关键字应当是“程序员”并且“程序员”的得分应当最高。
首先对这句话分词,这里可以借助各种分词项目,比如Ansj分词,得出分词结果:
[程序员/n, (, 英文/nz,
programmer/en, ), 是/v, 从事/v, 程序/n, 开发/v, 、/w, 维护/v, 的/uj, 专业/n, 人员/n,
。/w, 一般/a, 将/d, 程序员/n, 分为/v, 程序/n, 设计/vn, 人员/n, 和/c, 程序/n, 编码/n, 人员/n,
,/w, 但/c, 两者/r, 的/uj, 界限/n, 并/c, 不/d, 非常/d, 清楚/a, ,/w, 特别/d, 是/v, 在/p,
中国/ns, 。/w, 软件/n, 从业/b, 人员/n, 分为/v, 初级/b, 程序员/n, 、/w, 高级/a, 程序员/n, 、/w,
系统/n, 分析员/n, 和/c, 项目/n, 经理/n, 四/m, 大/a, 类/q, 。/w]
然后去掉里面的停用词,这里我去掉了标点符号、常用词、以及“名词、动词、形容词、副词之外的词”。得出实际有用的词语:
[程序员, 英文, 程序, 开发, 维护, 专业, 人员, 程序员, 分为, 程序, 设计, 人员, 程序, 编码, 人员, 界限, 特别, 中国, 软件, 人员, 分为, 程序员, 高级, 程序员, 系统, 分析员, 项目, 经理]
之后建立两个大小为5的窗口,每个单词将票投给它身前身后距离5以内的单词:
{开发=[专业, 程序员, 维护, 英文, 程序, 人员],
软件=[程序员, 分为, 界限, 高级, 中国, 特别, 人员],
程序员=[开发, 软件, 分析员, 维护, 系统, 项目, 经理, 分为, 英文, 程序, 专业, 设计, 高级, 人员, 中国],
分析员=[程序员, 系统, 项目, 经理, 高级],
维护=[专业, 开发, 程序员, 分为, 英文, 程序, 人员],
系统=[程序员, 分析员, 项目, 经理, 分为, 高级],
项目=[程序员, 分析员, 系统, 经理, 高级],
经理=[程序员, 分析员, 系统, 项目],
分为=[专业, 软件, 设计, 程序员, 维护, 系统, 高级, 程序, 中国, 特别, 人员],
英文=[专业, 开发, 程序员, 维护, 程序],
程序=[专业, 开发, 设计, 程序员, 编码, 维护, 界限, 分为, 英文, 特别, 人员],
特别=[软件, 编码, 分为, 界限, 程序, 中国, 人员],
专业=[开发, 程序员, 维护, 分为, 英文, 程序, 人员],
设计=[程序员, 编码, 分为, 程序, 人员],
编码=[设计, 界限, 程序, 中国, 特别, 人员],
界限=[软件, 编码, 程序, 中国, 特别, 人员],
高级=[程序员, 软件, 分析员, 系统, 项目, 分为, 人员],
中国=[程序员, 软件, 编码, 分为, 界限, 特别, 人员],
人员=[开发, 程序员, 软件, 维护, 分为, 程序, 特别, 专业, 设计, 编码, 界限, 高级, 中国]}
然后开始迭代投票:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
for (int i = 0; i < max_iter; ++i) { Map<String, Float> m = new HashMap<String, Float>(); float max_diff = 0; for (Map.Entry<String, Set<String>> entry : words.entrySet()) { String key = entry.getKey(); Set<String> value = entry.getValue(); m.put(key, 1 - d); for (String other : value) { int size = words.get(other).size(); if (key.equals(other) || size == 0) continue; m.put(key, m.get(key) + d / size * (score.get(other) == null ? 0 : score.get(other))); } max_diff = Math.max(max_diff, Math.abs(m.get(key) - (score.get(key) == null ? 0 : score.get(key)))); } score = m; if (max_diff <= min_diff) break; } |
排序后的投票结果:
[程序员=1.9249977,
人员=1.6290349,
分为=1.4027836,
程序=1.4025855,
高级=0.9747374,
软件=0.93525416,
中国=0.93414587,
特别=0.93352026,
维护=0.9321688,
专业=0.9321688,
系统=0.885048,
编码=0.82671607,
界限=0.82206935,
开发=0.82074183,
分析员=0.77101076,
项目=0.77101076,
英文=0.7098714,
设计=0.6992446,
经理=0.64640945]
程序员果然荣登榜首,并且分数也有区分度,嗯,勉勉强强。
TextRank算法提取关键词的Java实现的更多相关文章
- 基于TextRank提取关键词、关键短语、摘要
一.TextRank原理 TextRank是一种用来做关键词提取的算法,也可以用于提取短语和自动摘要.因为TextRank是基于PageRank的,所以首先简要介绍下PageRank算法. 1. Pa ...
- TextRank算法
TextRank是一种用来做关键词提取的算法,也可以用于提取短语和自动摘要.因为TextRank是基于PageRank的,所以首先简要介绍下PageRank算法. (1)PageRank PageRa ...
- Textrank算法介绍
先说一下自动文摘的方法.自动文摘(Automatic Summarization)的方法主要有两种:Extraction和Abstraction.其中Extraction是抽取式自动文摘方法,通过提取 ...
- TF-IDF与余弦类似性的应用(一):自己主动提取关键词
作者: 阮一峰 日期: 2013年3月15日 原文链接:http://www.ruanyifeng.com/blog/2013/03/tf-idf.html 这个标题看上去好像非常复杂,事实上我要谈的 ...
- 基于TextRank算法的文本摘要
本文介绍TextRank算法及其在多篇单领域文本数据中抽取句子组成摘要中的应用. TextRank 算法是一种用于文本的基于图的排序算法,通过把文本分割成若干组成单元(句子),构建节点连接图,用句子之 ...
- TextRank算法及生产文本摘要方法介绍
TextRank 算法是一种用于文本的基于图的排序算法,其基本思想来源于谷歌的 PageRank算法,通过把文本分割成若干组成单元(句子),构建节点连接图,用句子之间的相似度作为边的权重,通过循环迭代 ...
- Java 需要记得、了解的关键词 (Java 学习中的小记录)
Java 需要记得.了解的关键词 (Java 学习中的小记录) 作者:王可利(Star·星星) 总结:本次随笔,仅且拿来平时翻阅记忆用
- PageRank算法与TextRank算法详解
PageRank算法: 该算法本质上属于有向带权图. 对于某个互联网网页A来说,该网页PageRank的计算基于以下两个基本假设: 数量假设:在Web图模型中,如果一个页面节点接收到的其他网页指向的入 ...
- 算法笔记_071:SPFA算法简单介绍(Java)
目录 1 问题描述 2 解决方案 2.1 具体编码 1 问题描述 何为spfa(Shortest Path Faster Algorithm)算法? spfa算法功能:给定一个加权连通图,选取一个 ...
随机推荐
- <系统函数实现>memcmp
这是我实现的memcmp函数: #include <stdio.h> #include <string.h> /* *int memcmp (const void *s1,co ...
- Mysql捕捉(网站)应用执行的语句
如题,很多时候我们需要知道某个程序或者网站链接到额数据库到底执行了什么语句,对于MSsql来说, 比较简单,有相对应的事件查看器,但是对于mysql来说,并没有这个组件或者相关配套工具,此时我们可以 ...
- 第三次作业之Calculator项目随笔
附:Github的链接:https://github.com/mingyueanyao/object-oriented/tree/master/Calculator 1.初见题目: 第一眼看到题目最大 ...
- 那些年困扰我们的委托(C#)
委托这个东西不是很好理解,可是工作中又经常用到,你随处可以看到它的身影,真让人有一种又爱又恨的感觉,我相信许多人被它所困扰过. 一提到委托,如果你学过C语言,你一定会马上联想到函数指针. 什么是委托? ...
- 利用HTML5开发Android(1)---Android设备多分辨率的问题
Android浏览器默认预览模式浏览 会缩小页面 WebView中则会以原始大小显示 Android浏览器和WebView默认为mdpi.hdpi相当于mdpi的1.5倍 ldpi相当于0.75倍 三 ...
- SOA服务开发小计
http://item.jd.com/11181846.html#comment SOA面向服务架构——SOA的概念 http://www.cnblogs.com/leslies2/archive/2 ...
- 数据库相关文章转载(1) MySQL性能优化之参数配置
1.目的: 通过根据服务器目前状况,修改Mysql的系统参数,达到合理利用服务器现有资源,最大合理的提高MySQL性能. 2.服务器参数: 32G内存.4个CPU,每个CPU 8核. 3.MySQL目 ...
- myeclipse 10 载入新的项目报错Cannot return from outside a function or method
myeclipse 10 载入新的项目报错Cannot return from outside a function or method 解决方法: 方法一: window -->prefere ...
- map的实现
1.map的实现是使用平衡树,AVL树或者红黑树. 2.在无序的情况下,查找为常数时间.有序的时候,查找为对数时间.二叉排序树(BST)就是为了解决这个问题. 3.但是,极端情况下,BST的查找效率退 ...
- This implementation is not part of the Windows Platform FIPS validated cryptographic algorithms. 此实现不是 Windows 平台 FIPS 验证的加密算法的一部分 解决方案
但web启用了md5加密后 有可能出现这样的错误 This implementation is not part of the Windows Platform FIPS validated cryp ...