Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is equal to the permanent of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.

Solution. $$\beex \bea &\quad \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots \vee y_k}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \sef{x_{\sigma(1)},y_{\tau(1)}} \cdots \sef{x_{\sigma(k)},y_{\tau(k)}}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}} \\ &=\frac{1}{k!} \sum_{\sigma}\sez{ \sum_{\tau} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}}} \\ &=\frac{1}{k!} \sum_{\sigma}\per \sex{\sef{x_i,y_j}}\\ &=\per \sex{\sef{x_i,y_j}}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. ExtJS 添加图标icon

    extjs控件有两个属性:一个是iconCls:另一个是icon.通过这两个属性可以对控件添加图标 1.直接引用图标路径 icon: '../icons/application_view_detail ...

  2. maven eclipse web项目流程(简化内容)

    1.maven eclipse 环境搭建 1.1 下载解压配置环境变量(解压.环境变量maven目录到bin.setting.xml 改本地仓库) 1.2 eclipse插件安装配置(link安装.加 ...

  3. ByteBuffer的allocate和allocateDirect区别

    ByteBuffer的allocate和allocateDirect区别 在Java中当我们要对数据进行更底层的操作时,通常是操作数据的字节(byte)形式,这时常常会用到ByteBuffer这样一个 ...

  4. WCF已超过传入消息(65536)的最大消息大小配额的解决方法

    在服务端和客户端的配置文件中添加修改节点 maxReceivedMessageSize="1000000000" ; 或者通过编程设置bind.MaxReceivedMessage ...

  5. hdu 1024

    参考了一下 http://moxi466839201.blog.163.com/blog/static/18003841620110220374942/ 滚动数组   状态转移方程不太好理解 .... ...

  6. POJ1228+凸包

    见代码. /* 凸包(稳定凸包) 题意:给出一些点,这些点要么是凸包的顶点要么是边上的. 证明每条边上都至少有3个点. */ #include<stdio.h> #include<s ...

  7. linux中class_create和class_register说明

    http://blog.csdn.net/angle_birds/article/details/16802099 本文介绍linux中class_create和class_register的相关使用 ...

  8. Qt之自定义控件(开关按钮)Qt之模拟时钟

    http://blog.csdn.net/u011012932/article/details/52164289 http://blog.csdn.net/u011012932/article/det ...

  9. JavaScript 获取客户端计算机硬件及系统信息

    1.浏览器信息 //浏览器信息 function BrowserInfo() { var userLanguage = navigator.userLanguage;     // 用户在自己的操作系 ...

  10. 初始化D3D设备

    bool initD3D(HWND hWnd) { // 主要目的是获取设备,为调用下面的函数做很多准备. // 比如 获取IDirect3D9 ,获取支持的顶点处理,填充后备缓冲相关参数等. // ...