Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is equal to the permanent of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.

Solution. $$\beex \bea &\quad \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots \vee y_k}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \sef{x_{\sigma(1)},y_{\tau(1)}} \cdots \sef{x_{\sigma(k)},y_{\tau(k)}}\\ &=\frac{1}{k!} \sum_{\sigma,\tau} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}} \\ &=\frac{1}{k!} \sum_{\sigma}\sez{ \sum_{\tau} \sef{x_1,y_{\tau(\sigma^{-1}(1))}} \cdots \sef{x_k,y_{\tau(\sigma^{-1}(k))}}} \\ &=\frac{1}{k!} \sum_{\sigma}\per \sex{\sef{x_i,y_j}}\\ &=\per \sex{\sef{x_i,y_j}}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. Angularjs 通过WebApi 下载excel

    如果想知道 AngularJs 通过WebAPI 下载Excel.请看下文,这里仅提供了一种方案. 服务器端代码如下: protected HttpResponseMessage GenereateE ...

  2. C++ 虚函数表解析(转载)

    转载自:陈皓 http://blog.csdn.net/haoel/article/details/1948051/ 前言 C++中的虚函数的作用主要是实现了多态的机制.关于多态,简而言之就是用父类型 ...

  3. lua通过bunlde读注意事项

    把lua脚本做成bundle,加载字符串,变成lua对象: lua loadstring("name")() 注意:loadstring的问题: 无法访问全局local变量,需要改 ...

  4. Eclipse升级到4.4.2后界面主题更改

    在win8.1电脑上一直很喜欢eclipse luna sr1a(4.4.1)版本的界面好像是软件自动设置的. 这几天更新到eclipse luna sr2(4.4.2)版本后发现界面大变,怎么也找不 ...

  5. React Native Android配置部署踩坑日记

    万事开头难 作为一只进入ECMAScript世界不久的菜鸟,已经被React Native的名气惊到了,开源一周数万星勾起了我浓烈的兴趣.新年新气象,来个HellWorld压压惊吧^_^(故意少打个' ...

  6. SQL注入中的WAF绕过技术

    目录 1.大小写绕过 2.简单编码绕过 3.注释绕过 4.分隔重写绕过 5.Http参数污染(HPP) 6.使用逻辑运算符 or /and绕过 7.比较操作符替换 8.同功能函数替换 9.盲注无需or ...

  7. uva 1421

    稍微有点新意的二分 #include<cstdio> #include<cstring> #include<algorithm> #include<cmath ...

  8. URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)

    点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...

  9. PreparedStatement的用法

    转载:http://www.cnblogs.com/raymond19840709/archive/2008/05/12/1192948.html jdbc(java database connect ...

  10. 怎样配置spring aop

    1.spring aop配置如下: 1.aspect切面是一个具体类,里面包含各种执行的通知方法.切面类也要注册到ioc容器中. 2.切入点pointcut,可以在每个通知里单独配置,即每个通知可以指 ...