【题目大意】混合图欧拉回路(1 <= N <= 200, 1 <= M <= 1000)

【建模方法】

把该图的无向边随便定向,计算每个点的入度和出度。如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路。因为欧拉回路要求每点入度 = 出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路。
好了,现在每个点入度和出度之差均为偶数。那么将这个偶数除以2,得x。也就是说,对于每一个点,只要将x条边改变方向(入>出就是变入,出>入就是变出),就能保证出=入。如果每个点都是出=入,那么很明显,该图就存在欧拉回路。
现在的问题就变成了:我该改变哪些边,可以让每个点出=入?构造网络流模型。首先,有向边是不能改变方向的,要之无用,删。一开始不是把无向边定向了吗?定的是什么向,就把网络构建成什么样,边长容量上限1。另新建s和t。对于入>出的点u,连接边(u, t)、容量为x,对于出>入的点v,连接边(s, v),容量为x(注意对不同的点x不同)。之后,察看是否有满流(最大流=从源点出去的流量)的分配。有就是能有欧拉回路,没有就是没有。欧拉回路是哪个?察看流值分配,将所有流量非 0(上限是1,流值不是0就是1)的边反向,就能得到每点入度=出度的欧拉图。
由于是满流,所以每个入>出的点,都有x条边进来,将这些进来的边反向,OK,入=出了。对于出>入的点亦然。那么,没和s、t连接的点怎么办?和s连接的条件是出>入,和t连接的条件是入>出,那么这个既没和s也没和t连接的点,自然早在开始就已经满足入=出了。那么在网络流过程中,这些点属于“中间点”。我们知道中间点流量不允许有累积的,这样,进去多少就出来多少,反向之后,自然仍保持平衡。
所以,就这样,混合图欧拉回路问题,解了。

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)/2)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int MAXV = 305;
const int MAXE = 10005;
struct node{
int u, v, flow;
int opp;
int next;
};
struct Dinic{
node arc[MAXE];
int vn, en, head[MAXV]; //vn点个数(包括源点汇点),en边个数
int cur[MAXV]; //当前弧
int q[MAXV]; //bfs建层次图时的队列
int path[MAXE], top; //存dfs当前最短路径的栈
int dep[MAXV]; //各节点层次
void init(int n){
vn = n;
en = 0;
mem(head, -1);
}
void insert_flow(int u, int v, int flow){
arc[en].u = u;
arc[en].v = v;
arc[en].flow = flow;
arc[en].opp = en + 1;
arc[en].next = head[u];
head[u] = en ++; arc[en].u = v;
arc[en].v = u;
arc[en].flow = 0; //反向弧
arc[en].opp = en - 1;
arc[en].next = head[v];
head[v] = en ++;
}
bool bfs(int s, int t){
mem(dep, -1);
int lq = 0, rq = 1;
dep[s] = 0;
q[lq] = s;
while(lq 0){
dep[v] = dep[u] + 1;
q[rq ++] = v;
}
}
}
return false;
}
int solve(int s, int t){
int maxflow = 0;
while(bfs(s, t)){
int i, j;
for (i = 1; i arc[path[k]].flow){
minflow = arc[path[k]].flow;
mink = k;
}
for (int k = 0; k outdeg[i]){
dinic.insert_flow(i, n+2, x/2);
sum += x/2;
}
else{
dinic.insert_flow(n+1, i, x/2);
}
}
if (!ok){
puts("impossible");
continue;
}
if (dinic.solve(n+1, n+2) == sum){
puts("possible");
}
else{
puts("impossible");
}
}
return 0;
}

POJ 1637 Sightseeing tour ★混合图欧拉回路的更多相关文章

  1. poj 1637 Sightseeing tour 混合图欧拉回路 最大流 建图

    题目链接 题意 给定一个混合图,里面既有有向边也有无向边.问该图中是否存在一条路径,经过每条边恰好一次. 思路 从欧拉回路说起 首先回顾有向图欧拉回路的充要条件:\(\forall v\in G, d ...

  2. POJ 1637 Sightseeing tour (混合图欧拉回路)

    Sightseeing tour   Description The city executive board in Lund wants to construct a sightseeing tou ...

  3. POJ 1637 Sightseeing tour(混合图的欧拉回路)

    题目链接 建个图,套个模板. #include <cstdio> #include <cstring> #include <iostream> #include & ...

  4. poj1637 Sightseeing tour(混合图欧拉回路)

    题目链接 题意 给出一个混合图(有无向边,也有有向边),问能否通过确定无向边的方向,使得该图形成欧拉回路. 思路 这是一道混合图欧拉回路的模板题. 一张图要满足有欧拉回路,必须满足每个点的度数为偶数. ...

  5. POJ1637 Sightseeing tour (混合图欧拉回路)(网络流)

                                                                Sightseeing tour Time Limit: 1000MS   Me ...

  6. POJ 1637 Sightseeing tour 建图+网络流

    题意: 给定一个混合图,所谓混合图就是图中既有单向边也有双向边,现在求这样的图是否存在欧拉回路. 分析: 存在欧拉回路的有向图,必须满足[入度==出度],现在,有些边已经被定向,所以我们直接记录度数即 ...

  7. poj 1637 Sightseeing tour —— 最大流+欧拉回路

    题目:http://poj.org/problem?id=1637 建图很妙: 先给无向边随便定向,这样会有一些点的入度不等于出度: 如果入度和出度的差值不是偶数,也就是说这个点的总度数是奇数,那么一 ...

  8. poj1637 Sightseeing tour 混合图欧拉回路判定

    传送门 第一次做这种题, 尽管ac了但是完全不知道为什么这么做. 题目就是给一些边, 有向边与无向边混合, 问你是否存在欧拉回路. 做法是先对每个点求入度和出度, 如果一条边是无向边, 就随便指定一个 ...

  9. poj 1637 Sightseeing tour——最大流+欧拉回路

    题目:http://poj.org/problem?id=1637 先给无向边随便定向,如果一个点的入度大于出度,就从源点向它连 ( 入度 - 出度 / 2 ) 容量的边,意为需要流出去这么多:流出去 ...

随机推荐

  1. JavaScript的常见事件和Ajax小结

    一.常见事件类型 1.鼠标事件 事件名称 说明 onclick 鼠标单击时触发 ondbclick 鼠标双击时触发 onmousedown 鼠标左键按下时触发 onmouseup 鼠标释放时触发 on ...

  2. 一些shell脚本实例

    在群里也混了不少时间了.总结一些实例 #统计QQ消息里面某个用户改名字的记录# awk -f# 聊改名字记录#特殊例子 例如#2013-11-28 9:23:56 北京-AA-Vip<12345 ...

  3. WPF中Image的Stretch属性

    有时候我们在WPF程序中设置了图片的Width和Height,但图片显示出来的宽和高并不是我们预期的效果,这实际上是由于Image的默认Stretch属性导致的 Image的Stretch属性默认为U ...

  4. PAT Ranking (排名)

    PAT Ranking (排名) Programming Ability Test (PAT) is organized by the College of Computer Science and ...

  5. shell echo打印换行的方法

    echo要支持同C语言一样的\转义功能,只需要加上参数-e,如下所示: [~]#echo "Hello world.\nHello sea" Hello world.\nHello ...

  6. input输入框的各种样式

    输入框景背景透明: <input style="background:transparent;border:1px solid #ffffff"> 鼠标划过输入框,输入 ...

  7. Windows 7下载

    原版的ISO:windows 7 旗舰版:32位: ed2k://|file|cn_windows_7_ultimate_x86_dvd_x15-65907.iso|2604238848|D6F139 ...

  8. xx创新论坛返工友情项目总结

    友情项目,顾名思义就不是我做的,只是处于友情帮别人改改别人的代码帮别人找找bug...之所以要强调这一点是因为里面的低级问题太多,实在是不好意思承认自己和这个项目有关系.. 整个过程还是挺辛苦的,毕竟 ...

  9. Hadoop的安装与配置说明

    安装hadoop是一件非常容易的事情,读者可以在官网上下载到最近的几个hadoop版本.网址为http://apache.etoak.com//hadoop/core/.   目前,hadoop可以运 ...

  10. winform保存登录cookie

       在web程序中,我们通常使会使用cookie来保存一些用户状态,或者权限或者你想保存的东西,但是在CS程序中,如果要使用cookie就必须要做些功课了... 最好注意以下几点:   1.使用成员 ...