E. XOR and Favorite Number

题目连接:

http://www.codeforces.com/contest/617/problem/E

Descriptionww.co

Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.

Input

The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.

The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.

Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.

Output

Print m lines, answer the queries in the order they appear in the input.

Sample Input

6 2 3

1 2 1 1 0 3

1 6

3 5

Sample Output

7

0

Hint

题意

给你n个数,然后M次询问,问你l,r区间内有多少对数,使得a[i]^a[j] = k

题解:

无修改,而且可以知道[l,r]可以O(1)就出[l-1,r],[l,r+1],[l+1,r],[l,r-1]的数据的

所有很显然的莫队算法搞一搞就好了

直接大暴力,注意不能再带log,所以直接开数组存就好了

注意,数组得开大一点哦

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 120010; int a[maxn],pos[maxn];
long long ans,flag[5000000];
long long Ans[maxn];
int k;
struct query
{
int l,r,id;
}Q[maxn];
bool cmp(query a,query b)
{
if(pos[a.l]==pos[b.l])
return a.r<b.r;
return pos[a.l]<pos[b.l];
}
void Updata(int x)
{
ans+=flag[a[x]^k];
flag[a[x]]++;
}
void Delete(int x)
{
flag[a[x]]--;
ans-=flag[a[x]^k];
}
int main()
{
int n,m;
scanf("%d%d%d",&n,&m,&k);
int sz =ceil(sqrt(1.0*n));
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
pos[i]=(i-1)/sz;
}
for(int i=1;i<=n;i++)
a[i]^=a[i-1];
for(int i=1;i<=m;i++)
{
scanf("%d%d",&Q[i].l,&Q[i].r);
Q[i].id = i;
}
sort(Q+1,Q+1+m,cmp);
int l = 1,r = 0;
ans=0;
flag[0]=1;
for(int i=1;i<=m;i++)
{
int id = Q[i].id;
while(r<Q[i].r)
{
r++;
Updata(r);
}
while(l>Q[i].l)
{
l--;
Updata(l-1);
}
while(r>Q[i].r)
{
Delete(r);
r--;
}
while(l<Q[i].l)
{
Delete(l-1);
l++;
}
Ans[id]=ans;
}
for(int i=1;i<=m;i++)
printf("%lld\n",Ans[i]);
}

Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 莫队算法的更多相关文章

  1. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法

    题目链接:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...

  2. Codeforces Round #340 (Div. 2) E XOR and Favorite Number 莫队板子

    #include<bits/stdc++.h> using namespace std; <<; struct node{ int l,r; int id; }q[N]; in ...

  3. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 【莫队算法 + 异或和前缀和的巧妙】

    任意门:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...

  4. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number (莫队)

    题目链接:http://codeforces.com/contest/617/problem/E 题目大意:有n个数和m次查询,每次查询区间[l, r]问满足ai ^ ai+1 ^ ... ^ aj ...

  5. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number

    time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standa ...

  6. codeforces 617E E. XOR and Favorite Number(莫队算法)

    题目链接: E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes i ...

  7. Codeforces617 E . XOR and Favorite Number(莫队算法)

    XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...

  8. CodeForces - 617E XOR and Favorite Number 莫队算法

    https://vjudge.net/problem/CodeForces-617E 题意,给你n个数ax,m个询问Ly,Ry,  问LR内有几对i,j,使得ai^...^ aj =k. 题解:第一道 ...

  9. [Codeforces Round #340 (Div. 2)]

    [Codeforces Round #340 (Div. 2)] vp了一场cf..(打不了深夜的场啊!!) A.Elephant 水题,直接贪心,能用5步走5步. B.Chocolate 乘法原理计 ...

随机推荐

  1. SQL语句构建器类

    问题 Java程序员面对的最痛苦的事情之一就是在Java代码中嵌入SQL语句.这么来做通常是由于SQL语句需要动态来生成-否则可以将它们放到外部文件或者存储过程中.正如你已经看到的那样,MyBatis ...

  2. PHP 新建动态类的代码

    $testObject=(object)array(); $testObject->first="firstValue"; var_dump($testObject); $t ...

  3. Cracking the Code Interview 4.3 Array to Binary Tree

    Given a sorted (increasing order) array, write an algorithm to create a binary tree with minimal hei ...

  4. Application Cache

    轉發處:http://www.cnblogs.com/blackbird/archive/2012/06/12/2546751.html HTML5提供了一系列的特性来支持离线应用: applicat ...

  5. 解读Cardinality Estimation<基数估计>算法(第一部分:基本概念)

    基数计数(cardinality counting)是实际应用中一种常见的计算场景,在数据分析.网络监控及数据库优化等领域都有相关需求.精确的基数计数算法由于种种原因,在面对大数据场景时往往力不从心, ...

  6. 【开源项目之路】jquery的build问题

    在刚开始clone了jquery到本地build的时候,就遇到了问题. “ENORESTARGET No tag found that was able to satisfy ...” 提示为bowe ...

  7. PHP代码格式化批量脚本

    @echo off echo please input phpCB url: set /p input= cd /d "E:\tools\phpCB\" phpCB --space ...

  8. 使用Sunny-grok实现内网转发

    Sunny-grok 申请地址:http://www.ngrok.cc ngrok.cfg配置: server_addr: "server.ngrok.cc:4443" auth_ ...

  9. Xcode升级后插件失效的原理与修复办法

    转载:http://joeshang.github.io/2015/04/10/fix-xcode-upgrade-plugin-invalid/ Xcode 的插件大大丰富了 Xcode 的功能,而 ...

  10. windows平台下,快速删除所有.svn文件夹

    新建一个注册表文件名为:DELSVN.reg编辑其内容如下: Windows Registry Editor Version 5.00 [HKEY_LOCAL_MACHINE\SOFTWARE\Cla ...