http://blog.csdn.net/acdreamers/article/details/17021095

有一个n*m的棋盘,每次可以取走一个方格并拿掉它右边和上面的所有方格。拿到左下角的格子(1,1)者输,如下图是8*3的

棋盘中拿掉(6,2)和(2,3)后的状态。




结论:答案是除了1*1的棋盘,对于其他大小的棋盘,先手总能赢。


分析:有一个很巧妙的证明可以保证先手存在必胜策略,可惜这个证明不是构造性的,也就是说没有给出先手怎么下才能赢。


证明如下:

如果后手能赢,也就是说后手有必胜策略,使得无论先手第一次取哪个石子,后手都能获得最后的胜利。那么现在假设先手

最右上角的石子(n,m),接下来后手通过某种取法使得自己进入必胜的局面。但事实上,先手在第一次取的时候就可以和

后手这次取的一样,进入必胜局面了,与假设矛盾。



巧克力游戏的变形:


约数游戏:有1~n个数字,两个人轮流选择一个数字,并把它和它的约数擦去。擦去最后一个数的人赢,问谁会获胜。


分析:类似巧克力游戏,得到结论就是无论n是几,都是先手必胜。(可假设先手选“1”)。

Chomp!游戏 (组合游戏Combinatorial Games)的更多相关文章

  1. Nim游戏(组合游戏Combinatorial Games)

    http://baike.baidu.com/view/1101962.htm?fr=aladdin Nim游戏是博弈论中最经典的模型(之一),它又有着十分简单的规则和无比优美的结论 Nim游戏是组合 ...

  2. Vijos P1196吃糖果游戏[组合游戏]

    描述 Matrix67和Shadow正在做一个小游戏. 桌子上放着两堆糖果,Matrix67和Shadow轮流对这些糖果进行操作.在每一次操作中,操作者需要吃掉其中一堆糖果,并且把另一堆糖果分成两堆( ...

  3. 51nod-1661 1661 黑板上的游戏(组合游戏)

    题目链接: 1661 黑板上的游戏 Alice和Bob在黑板上玩一个游戏,黑板上写了n个正整数a1, a2, ..., an,游戏的规则是这样的:1. Alice占有先手主动权.2. 每个人可以选取一 ...

  4. HDU 1536 S-Nim (组合游戏+SG函数)

    题意:针对Nim博弈,给定上一个集合,然后下面有 m 个询问,每个询问有 x 堆石子 ,问你每次只能从某一个堆中取出 y 个石子,并且这个 y 必须属于给定的集合,问你先手胜还是负. 析:一个很简单的 ...

  5. 浅谈公平组合游戏IGC

    浅谈公平组合游戏IGC IGC简介 一个游戏满足以下条件时被叫做IGC游戏 (前面三个字是自己YY的,不必在意) 竞争性:两名玩家交替行动. 公平性:游戏进程的任意时刻,可以执行的操作和操作者本人无关 ...

  6. Codeforces 918D MADMAX 图上dp 组合游戏

    题目链接 题意 给定一个 \(DAG\),每个边的权值为一个字母.两人初始各占据一个顶点(可以重合),轮流移动(沿着一条边从一个顶点移动到另一个顶点),要求每次边上的权值 \(\geq\) 上一次的权 ...

  7. 组合游戏 - SG函数和SG定理

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  8. 博弈论题目总结(二)——SG组合游戏及变形

    SG函数 为了更一般化博弈问题,我们引入SG函数 SG函数有如下性质: 1.如果某个状态SG函数值为0,则它后继的每个状态SG函数值都不为0 2.如果某个状态SG函数值不为0,则它至少存在一个后继的状 ...

  9. 【博弈论】组合游戏及SG函数浅析

    目录 预备知识 普通的Nim游戏 SG函数 预备知识 公平组合游戏(ICG) 若一个游戏满足: 由两名玩家交替行动: 游戏中任意时刻,合法操作集合只取决于这个局面本身: 若轮到某位选手时,若该选手无合 ...

  10. luoguP2148 [SDOI2009]E&D [sg函数][组合游戏]

    题目描述 小E 与小W 进行一项名为“E&D”游戏. 游戏的规则如下: 桌子上有2n 堆石子,编号为1..2n.其中,为了方便起见,我们将第2k-1 堆与第2k 堆 (1 ≤ k ≤ n)视为 ...

随机推荐

  1. bzoj 1834 [ZJOI2010]network 网络扩容(MCMF)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1834 [题意] 给定一个有向图,每条边有容量C,扩容费用W,问最大流和使容量增加K的最 ...

  2. BestCoder Round #68 (div.2) 1002 tree

    题意:给你一个图,每条边权值0或1,问每个点周围最近的点有多少个? 思路:并查集找权值为0的点构成的连通块. #include<stdio.h> #include<string.h& ...

  3. TCP/IP协议栈及OSI参考模型详解

    OSI参考模型 OSI RM:开放系统互连参考模型(open systeminterconnection reference model) OSI参考模型具有以下优点: 简化了相关的网络操作: 提供设 ...

  4. ANT打包J2EE项目war包

    1.下载并安装ant 2.安装ant步骤如下 .解压下载的zip包 .进入解压的目录,把bin目录放入系统变量PATH中. eg:E:\dev_tools\apache-ant-\bin .打开cmd ...

  5. gtest框架使用

    gtest文档说明: 由于公司单元测试的需要,自己花了大半天时间下载了一个gtest框架,使用了一些测试例子,总览了coderzh的玩转gtest测试框架,又看了几篇gtest博客,写下了以下内容,作 ...

  6. ISE和Modelsim联合仿真(转)

    相信很多人会遇到过这个问题,不知如何让ISE调用Modelsim进行仿真.我也迷糊了不少时间,查查找找,终于弄明白了,所以有了本文,和大家分享一下.我尽量讲得详细点儿,多多上图. 我的环境:Windo ...

  7. 【Java】推断文件的后缀名

    这本来不是一个问题,利用框架本来有的方法.或者File类的getPath()方法,取出要推断文件路径.或者getName()方法取出文件路径,成为一个String字符串如果为fileName之后,再对 ...

  8. Oracle DB 执行表空间时间点恢复

    • 列出在执行表空间时间点恢复(TSPITR) 时会发生的操作 • 阐释TSPITR 使用的术语的定义 • 确定适合将TSPITR 用作解决方案的情况 • 确定时间点恢复的正确目标时间 • 确定不能使 ...

  9. [Webpack] Use the Webpack Dashboard to Monitor Webpack Operations

    Learn how to use the new Webpack Dashboard from Formidable Labs to display a pretty, useful output f ...

  10. iOS开发——MVC详解&Swift+OC

    MVC 设计模式 这两天认真研究了一下MVC设计模式,在iOS开发中这个算是重点中的重点了,如果对MVC模式不理解或者说不会用,那么你iOS肯定学不好,或者写不出好的东西,当然本人目前也在学习中,不过 ...