题目

/******************************************************************/

以下题解来自互联网:Juny的博客

思路核心:给你的闭包其实就是一个有向图;
方法:

1,对此图进行缩点,对于点数为n(n>1)的强连通分量最少要 n 条边,

对点数为 1 的强连通不需要边,这样计算出边数 m1 ;
2,在缩点后的有向无环图中进行反floyd,如果有边a->b,b->c,a->c那么显然a->c可以去掉,

就这样一直去除这样的边,直到不能再去为止,算出最终边数 m2;
3,m1+m2 即为答案;

这样做速度比较慢,但小草还没想出其他好的办法,希望有大牛指点……

/*****************************************************************/

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
using namespace std; #define MAXN 20010
#define MAXM 50010 struct Edge
{
int v, next;
}edge[MAXM]; //边结点数组 int first[MAXN], stack[MAXN], DFN[MAXN], Low[MAXN], Belong[MAXM];
// first[]头结点数组,stack[]为栈,DFN[]为深搜次序数组,
//Belong[]为每个结点所对应的强连通分量标号数组
// Low[u]为u结点或者u的子树结点所能追溯到的最早栈中结点的次序号
int instack[MAXM],num[MAXN]; // instack[]为是否在栈中的标记数组
int n, m, cnt, scnt, top, tot; void init()
{
cnt = ;
scnt = top = tot = ;
memset(first, -, sizeof(first));
memset(DFN, , sizeof(DFN));
memset(num,,sizeof(num));
} void read_graph(int u, int v)
{
edge[tot].v = v;
edge[tot].next = first[u];
first[u] = tot++;
} void Tarjan(int v)
{
int t;
DFN[v] = Low[v] = ++cnt;
instack[v] = ;
stack[top++] = v;
for(int e = first[v]; e != -; e = edge[e].next)
{
int j = edge[e].v;
if(!DFN[j])
{
Tarjan(j);
if(Low[v] > Low[j]) Low[v] = Low[j]; }
else if(instack[j] && DFN[j] < Low[v])
{
Low[v] = DFN[j];
}
}
if(DFN[v] == Low[v])
{
scnt++;
do
{
t = stack[--top];
instack[t] = ;
Belong[t] = scnt; //为缩点做准备的
num[scnt]++;
}while(t != v);
}
} void solve()
{
for(int i = ; i <= n; i++)
if(!DFN[i])
Tarjan(i);
} int main()
{
int i,j,map[][],sum1,ans,map1[][];//map1[][]是缩点后新建的图
while(scanf("%d",&n)!=EOF)
{
init();
ans=;
memset(map,,sizeof(map));
memset(map1,,sizeof(map1));
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
scanf("%d",&map[i][j]);
if(map[i][j]==&&i!=j)
{
read_graph(i,j);
}
}
}
solve();
sum1=;
for(i=;i<=scnt;i++)
{
if(num[i]>)
sum1+=num[i];
}
for(int ii=;ii<=n;ii++)
{
for(int jj=;jj<=n;jj++)
{
if(map[ii][jj]&&Belong[ii]!=Belong[jj])
map1[Belong[ii]][Belong[jj]]=;
}
}
for(int ii=;ii<=scnt;ii++)
for(int jj=;jj<=scnt;jj++)
for(int kk=;kk<=scnt;kk++)
if(map1[ii][jj]&&map1[ii][kk]&&map1[kk][jj])//此处在缩点新建图
map1[ii][jj]=;
for(int ii=;ii<=scnt;ii++)
for(int jj=;jj<=scnt;jj++)
if(map1[ii][jj])
ans++;
printf("%d\n",sum1+ans);
}
return ;
}

zoj 3232 It's not Floyd Algorithm(强联通分量,缩点)的更多相关文章

  1. 【最小割】【Dinic】【强联通分量缩点】bzoj1797 [Ahoi2009]Mincut 最小割

    结论: 满足条件一:当一条边的起点和终点不在 残量网络的 一个强联通分量中.且满流. 满足条件二:当一条边的起点和终点分别在 S 和 T 的强联通分量中.且满流.. 网上题解很多的. #include ...

  2. 【强联通分量缩点】【最长路】【spfa】CH Round #59 - OrzCC杯NOIP模拟赛day1 队爷的讲学计划

    10分算法:对于城市网络为一条单向链的数据, 20分算法:对于n<=20的数据,暴力搜出所有的可能路径. 结合以上可以得到30分. 60分算法:分析题意可得使者会带着去的城市也就是这个城市所在强 ...

  3. Tarjan求强联通分量+缩点

    提到Tarjan算法就不得不提一提Tarjan这位老人家 Robert Tarjan,计算机科学家,以LCA.强连通分量等算法闻名.他拥有丰富的商业工作经验,1985年开始任教于普林斯顿大学.Tarj ...

  4. 【强联通分量缩点】【Tarjan】bzoj1051 [HAOI2006]受欢迎的牛

    就是看是否有一些点,从其他任何点出发都可到达 定理:有向无环图中唯一出度为0的点,一定可以由任何点出发均可达. 所以缩点,若出度为零的点(强联通分量)唯一,则答案为该强联通分量中点的度数. 若不唯一, ...

  5. TOJ 3365 ZOJ 3232 It's not Floyd Algorithm / 强连通分量

    It's not Floyd Algorithm 时间限制(普通/Java):1000MS/3000MS     运行内存限制:65536KByte   描述 When a directed grap ...

  6. ZOJ 3232 It's not Floyd Algorithm --强连通分量+Floyd

    题意:给你一个传递闭包的矩阵,mp[u][v] = 1表示u可以到达v,为0代表不可到达,问你至少需要多少条边组成的传递闭包符合这个矩阵给出的关系 分析:考虑一个强连通分量,如果这个分量有n个节点,那 ...

  7. 【强联通分量缩点】【最短路】【spfa】bzoj1179 [Apio2009]Atm

    缩点后转化成 DAG图上的单源最长路问题.spfa/dp随便. #include<cstdio> #include<queue> #include<algorithm&g ...

  8. 【强联通分量缩点】【搜索】bzoj2208 [Jsoi2010]连通数

    两次dfs缩点,然后n次dfs暴搜. #include<cstdio> #include<vector> #include<cstring> using names ...

  9. BZOJ 1051 & 强联通分量

    题意: 怎么说呢...这种题目有点概括不来....还是到原题面上看好了... SOL: 求出强联通分量然后根据分量重构图,如果只有一个点没有出边那么就输出这个点中点的数目. 对就是这样. 哦还有论边双 ...

随机推荐

  1. UIPickerView基本用法

    #import "ViewController.h" #import <UIKit/UIKit.h> @interface ViewController : UIVie ...

  2. 基于 unity ngui 上的滚动加载__UiVirtual

    在游戏里面经常会有背包,好友,对话,这样的列表.当列表的内容多了,如果一打开界面就对所有内容进行实例化,会消耗大量的性能,且会造成UI上的卡顿. 于是便需要,在列表里面只实例化屏幕上可见的item.屏 ...

  3. .NET中的注释种类,单行注释、多行注释、文档注释。。。

    注释不是给编译器看的,而是给程序员看的.是程序员之间交流的一种方式.好的程序员一定要有完善的注释. .NET注释类型. 1.单行注释  // a.当代码行比较短时,注释可以放在代码后面. b.当代码行 ...

  4. LR通过SiteScope监控mysql

    SiteScope下载,安装 要想使用LoadRunner监测MySQL数据库的性能,LoadRunner没有提供直接监测 MySQL的功能,所以,我们需要借助sitescope监控,然后在LoadR ...

  5. Redis源码研究--双向链表

    之前看的内容,占个位子,以后补上. ----------8月4日--------------- 双向链表这部分看的比较爽,代码写的中规中矩,心里窃喜,跟之前学的<数据结构>这本书中差不多. ...

  6. API地图坐标转化(批量转换坐标)

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  7. Python-Day3 Python基础进阶之集和/文件读写/函数

    一.集和 集合是一个无序的,不重复的数据组合,它的主要作用如下: 去重,把一个列表变成集合,就自动去重了 关系测试,测试两组数据之前的交集.差集.并集等关系 1.创建集合 >>> s ...

  8. ASP.NET对HTML元素进行权限控制(一)

    一个HTML页面有很多的元素比如<DIV>,<P>等.这些元素构成了HTML页面.在Web开发中权限控制是每个系统都要用到了.界面每个元素的权限也是需要控制的.比如一个查询用户 ...

  9. 【转载】 使用Anemometer基于pt-query-digest将MySQL慢查询可视化

    原文地址:使用Anemometer基于pt-query-digest将MySQL慢查询可视化 作者:84223932 本文主要介绍使用Anemometer基于pt-query-digest将MySQL ...

  10. MySQL 5.6.26源码安装

    5.6.26源码安装包:http://pan.baidu.com/s/1kUl44WRcmake安装包链接:http://pan.baidu.com/s/1c0LuwJA 操作系统版本:CentOS ...