ZOJ1204——Additive equations(DFS)
Additive equations
Description
We all understand that an integer set is a collection of distinct integers. Now the question is: given an integer set, can you find all its addtive equations? To explain what an additive equation is, let's look at the following examples:
1+2=3 is an additive equation of the set {1,2,3}, since all the numbers that are summed up in the left-hand-side of the equation, namely 1 and 2, belong to the same set as their sum 3 does. We consider 1+2=3 and 2+1=3 the same equation, and will always output the numbers on the left-hand-side of the equation in ascending order. Therefore in this example, it is claimed that the set {1,2,3} has an unique additive equation 1+2=3.
It is not guaranteed that any integer set has its only additive equation. For example, the set {1,2,5} has no addtive equation and the set {1,2,3,5,6} has more than one additive equations such as 1+2=3, 1+2+3=6, etc. When the number of integers in a set gets large, it will eventually become impossible to find all the additive equations from the top of our minds -- unless you are John von Neumann maybe. So we need you to program the computer to solve this problem.
Input
The input data consists of several test cases.
The first line of the input will contain an integer N, which is the number of test cases.
Each test case will first contain an integer M (1<=M<=30), which is the number of integers in the set, and then is followed by M distinct positive integers in the same line.
Output
For each test case, you are supposed to output all the additive equations of the set. These equations will be sorted according to their lengths first( i.e, the number of integer being summed), and then the equations with the same length will be sorted according to the numbers from left to right, just like the sample output shows. When there is no such equation, simply output "Can't find any equations." in a line. Print a blank line after each test case.
Sample Input
3
3 1 2 3
3 1 2 5
6 1 2 3 5 4 6
Output for the Sample Input
1+2=3
Can't find any equations.
1+2=3
1+3=4
1+4=5
1+5=6
2+3=5
2+4=6
1+2+3=6
题目大意:
给定一个数列 找出其中的加法等式x1+x2+x3+..xn=y(其中x1,x2,x3,xn,y属于数列) (n>=2)
解题思路:
可以将数列看做一个无向完全图(即每个顶点都指向其他所有顶点)。用DFS搜索,将符合题目要求的存起来,再排序输出即可。 具体细节请看代码(语死早,没办法^^)
细节:
1)符合要求的等式比能保证x1<x2<x3<<xn<y
2)搜索前排好序,由小到大。根据1)可知只搜素比当前元素靠后的元素是否等于当前递归的总和即可。
Code:
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#define MAXN 30000
using namespace std;
int a[],flag[];
int N;
struct s //用于存等式用的结构体,记录等式中的各个元素和元素个数(最后一个元素必为等号右边元素)
{
int a[];
int lenth;
} str[MAXN];
int k=;
void output() //输出函数,k表示搜索后的符合要求的等式的数量。
{
if (k==) printf("Can't find any equations.\n\n");
else
{
for (int i=; i<=k; i++)
{
int j;
printf("%d",str[i].a[]);
for (j=; j<str[i].lenth; j++)
printf("+%d",str[i].a[j]);
printf("=%d\n",str[i].a[j]);
}
printf("\n");
}
}
void input()//DFS到符合要求的等式,将等式的各个元素存入数组
{
k++;
str[k].lenth=;
int t=;
for (int i=; i<=N; i++)
if (flag[i]!=) str[k].a[t++]=a[i],str[k].lenth++;
}
void DFS(int i,int sum) //flag[i]==1表示当前DFS中 i被使用了。
{ //当递归到符合条件的时候可根据当前的flag数组情况来获取等式的相关元素
sum+=a[i];
if (sum>a[N]) return ;
for (int j=i+; j<=N; j++)
if (sum==a[j])
{
flag[j]=;
input();
flag[j]=;
}
for (int j=i+; j<=N; j++)
{
flag[j]=;
DFS(j,sum);
flag[j]=;
}
}
bool cmp(struct s a,struct s b)//根据题目要求排序,保证短的在前,相同长度情况下数字小的在前
{
if (a.lenth!=b.lenth) return a.lenth<b.lenth;
for (int i=; i<=a.lenth; i++)
if (a.a[i]!=b.a[i]) return a.a[i]<b.a[i];
}
int main()
{
int T;
cin>>T;
while (T--)
{
memset(flag,,sizeof(flag));
memset(a,,sizeof(a));
k=;
cin>>N;
for (int i=; i<=N; i++)
cin>>a[i];
sort(a+,a++N);
for (int i=; i<=N; i++)
{
flag[i]=;
DFS(i,);
flag[i]=;
}
sort(str+,str+k+,cmp);
output();
}
return ;
}
ZOJ1204——Additive equations(DFS)的更多相关文章
- zoj 1204 Additive equations
ACCEPT acm作业 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=204 因为老师是在集合那里要我们做这道题.所以我很是天 ...
- Additive equations--zoj
Additive equations Time Limit: 10 Seconds Memory Limit: 32768 KB We all understand that an inte ...
- ZOJ 1204 一个集合能组成多少个等式
Additive equations Time Limit : 20000/10000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other ...
- 【转】POJ百道水题列表
以下是poj百道水题,新手可以考虑从这里刷起 搜索1002 Fire Net1004 Anagrams by Stack1005 Jugs1008 Gnome Tetravex1091 Knight ...
- POJ题目细究
acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP: 1011 NTA 简单题 1013 Great Equipment 简单题 102 ...
- HDU 2266 How Many Equations Can You Find(DFS)
How Many Equations Can You Find Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d ...
- How Many Equations Can You Find(dfs)
How Many Equations Can You Find Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 ...
- HDOJ(HDU).2266 How Many Equations Can You Find (DFS)
HDOJ(HDU).2266 How Many Equations Can You Find (DFS) [从零开始DFS(9)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零 ...
- hdu - 2266 How Many Equations Can You Find (简单dfs)
http://acm.hdu.edu.cn/showproblem.php?pid=2266 给一个字符串和一个数n,在字符串中间可以插入+或者 -,问有多少种等于n的情况. 要注意任意两个数之间都可 ...
随机推荐
- 119. Pascal's Triangle II
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...
- bootstrap-validator使用
bootstrap-validator是一款与bootstrap相结合的表单前端验证模块,官方网址:http://1000hz.github.io/bootstrap-validator/ 下面内容大 ...
- Thinkphp 缓存微信jssdk相关认证参数
public function getapiSignature() { $access_token=S('access_token'); //先查询缓存中是否存在 if($access_toke ...
- ObjectInput read方法的坑
最近搞得一个bug,搞了好久既抓包分析数据,又debug竟然就是搞不懂为什么数据只是读了前面一部分.后来仔细研究了一下API,原来这个方法并不是你指的多少就读入多少指定的长度是最大长度,我嚓,太坑爹了 ...
- webpack+react+jquery和jquery插件
要引入jquery插件 全局引入jquery plugins : [new webpack.ProvidePlugin({ $: 'jquery', jQuery:'jquery' "win ...
- [Oracle]Oracle数据库任何用户密码都能以sysdba角色登入
* 本文相关环境:Windows 10,64位操作系统:Oracle 11gR2:toad for Oracle12.1 最近在学习Oracle数据库,使用Toad for Oracle来查看数据库的 ...
- uniquery 配合 mssql 自带存储过程实现分页
--使用系统存储过程实现的通用分页存储过程 -- 此过程原作者,应该是:邹健老前辈 CREATE PROC sp_PageView @sql ntext, --要执行的sql语句 , --要显示的页码 ...
- 开始学习python
刚刚离开学校,到公司实习,发现所有的技术都是崭新的,所有的工具都是熟悉中带着陌生. 就像是孤身一人到了一个曾经只闻其名的偌大城市,看什么都觉得新鲜,做什么都心有畏惧.幸好 搞软件并没有那么多人情世故, ...
- 【转】How to view word document in WPF application
How to view word document in WPF application (CSVSTOViewWordInWPF) Introduction The Sample demonstra ...
- table 中实现 控制 指定列的 左对齐 右对齐方式
.listTable{ border-collapse:collapse; border-top:1px solid #8c9594; border-right:1px solid #8c9594; ...