Additive equations

Description
We all understand that an integer set is a collection of distinct integers. Now the question is: given an integer set, can you find all its addtive equations? To explain what an additive equation is, let's look at the following examples:
1+2=3 is an additive equation of the set {1,2,3}, since all the numbers that are summed up in the left-hand-side of the equation, namely 1 and 2, belong to the same set as their sum 3 does. We consider 1+2=3 and 2+1=3 the same equation, and will always output the numbers on the left-hand-side of the equation in ascending order. Therefore in this example, it is claimed that the set {1,2,3} has an unique additive equation 1+2=3.
It is not guaranteed that any integer set has its only additive equation. For example, the set {1,2,5} has no addtive equation and the set {1,2,3,5,6} has more than one additive equations such as 1+2=3, 1+2+3=6, etc. When the number of integers in a set gets large, it will eventually become impossible to find all the additive equations from the top of our minds -- unless you are John von Neumann maybe. So we need you to program the computer to solve this problem.
Input
The input data consists of several test cases.
The first line of the input will contain an integer N, which is the number of test cases.
Each test case will first contain an integer M (1<=M<=30), which is the number of integers in the set, and then is followed by M distinct positive integers in the same line.
Output
For each test case, you are supposed to output all the additive equations of the set. These equations will be sorted according to their lengths first( i.e, the number of integer being summed), and then the equations with the same length will be sorted according to the numbers from left to right, just like the sample output shows. When there is no such equation, simply output "Can't find any equations." in a line. Print a blank line after each test case.
Sample Input
3
3 1 2 3
3 1 2 5
6 1 2 3 5 4 6
Output for the Sample Input
1+2=3
Can't find any equations.
1+2=3
1+3=4
1+4=5
1+5=6
2+3=5
2+4=6
1+2+3=6

题目大意:

    给定一个数列 找出其中的加法等式x1+x2+x3+..xn=y(其中x1,x2,x3,xn,y属于数列) (n>=2)

解题思路:

    可以将数列看做一个无向完全图(即每个顶点都指向其他所有顶点)。用DFS搜索,将符合题目要求的存起来,再排序输出即可。 具体细节请看代码(语死早,没办法^^)

    细节:

      1)符合要求的等式比能保证x1<x2<x3<<xn<y

      2)搜索前排好序,由小到大。根据1)可知只搜素比当前元素靠后的元素是否等于当前递归的总和即可。

Code:

 #include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#define MAXN 30000
using namespace std;
int a[],flag[];
int N;
struct s //用于存等式用的结构体,记录等式中的各个元素和元素个数(最后一个元素必为等号右边元素)
{
int a[];
int lenth;
} str[MAXN];
int k=;
void output() //输出函数,k表示搜索后的符合要求的等式的数量。
{
if (k==) printf("Can't find any equations.\n\n");
else
{
for (int i=; i<=k; i++)
{
int j;
printf("%d",str[i].a[]);
for (j=; j<str[i].lenth; j++)
printf("+%d",str[i].a[j]);
printf("=%d\n",str[i].a[j]);
}
printf("\n");
}
}
void input()//DFS到符合要求的等式,将等式的各个元素存入数组
{
k++;
str[k].lenth=;
int t=;
for (int i=; i<=N; i++)
if (flag[i]!=) str[k].a[t++]=a[i],str[k].lenth++;
}
void DFS(int i,int sum) //flag[i]==1表示当前DFS中 i被使用了。
{ //当递归到符合条件的时候可根据当前的flag数组情况来获取等式的相关元素
sum+=a[i];
if (sum>a[N]) return ;
for (int j=i+; j<=N; j++)
if (sum==a[j])
{
flag[j]=;
input();
flag[j]=;
}
for (int j=i+; j<=N; j++)
{
flag[j]=;
DFS(j,sum);
flag[j]=;
}
}
bool cmp(struct s a,struct s b)//根据题目要求排序,保证短的在前,相同长度情况下数字小的在前
{
if (a.lenth!=b.lenth) return a.lenth<b.lenth;
for (int i=; i<=a.lenth; i++)
if (a.a[i]!=b.a[i]) return a.a[i]<b.a[i];
}
int main()
{
int T;
cin>>T;
while (T--)
{
memset(flag,,sizeof(flag));
memset(a,,sizeof(a));
k=;
cin>>N;
for (int i=; i<=N; i++)
cin>>a[i];
sort(a+,a++N);
for (int i=; i<=N; i++)
{
flag[i]=;
DFS(i,);
flag[i]=;
}
sort(str+,str+k+,cmp);
output();
}
return ;
}

ZOJ1204——Additive equations(DFS)的更多相关文章

  1. zoj 1204 Additive equations

    ACCEPT acm作业 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=204 因为老师是在集合那里要我们做这道题.所以我很是天 ...

  2. Additive equations--zoj

    Additive equations Time Limit: 10 Seconds      Memory Limit: 32768 KB We all understand that an inte ...

  3. ZOJ 1204 一个集合能组成多少个等式

    Additive equations Time Limit : 20000/10000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other ...

  4. 【转】POJ百道水题列表

    以下是poj百道水题,新手可以考虑从这里刷起 搜索1002 Fire Net1004 Anagrams by Stack1005 Jugs1008 Gnome Tetravex1091 Knight ...

  5. POJ题目细究

    acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP:  1011   NTA                 简单题  1013   Great Equipment     简单题  102 ...

  6. HDU 2266 How Many Equations Can You Find(DFS)

    How Many Equations Can You Find Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

  7. How Many Equations Can You Find(dfs)

    How Many Equations Can You Find Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  8. HDOJ(HDU).2266 How Many Equations Can You Find (DFS)

    HDOJ(HDU).2266 How Many Equations Can You Find (DFS) [从零开始DFS(9)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零 ...

  9. hdu - 2266 How Many Equations Can You Find (简单dfs)

    http://acm.hdu.edu.cn/showproblem.php?pid=2266 给一个字符串和一个数n,在字符串中间可以插入+或者 -,问有多少种等于n的情况. 要注意任意两个数之间都可 ...

随机推荐

  1. @Autowired与@Resource用法

    官方文档中有这样一段话. If you intend to express annotation-driven injection by name, do not primarily use @Aut ...

  2. must implement the inherited abstract method DialogInterface.OnClickListener.onClick(DialogInterface, int)问题

    依照视屏编写代码如下 class MyButtonListener implements OnClickListener{ @Override public void onClick(View v){ ...

  3. 使用ckplayer搭建rtmp视频直播应用

    视频直播才有的是RTMP协议进行视频实时流传输,在这里我们用到的软件都是 adobe 公司的一个是:Flash Media Server4 另一个是flash media live encoder 这 ...

  4. GDI+ 绘图闪烁解决方法

    闲着没事,准备做一个类似于TeeChart的自定义控件,结果第一步的绘图就把我给难倒了,虽然早就知道GDI绘图的闪烁问题很坑,但是却没有想到如此之坑,折腾了两天,才找到解决方法. 首先在窗体加载的时候 ...

  5. 2015年1月最新中国行政区划县及以上代码mysql数据库

    中华人民共和国国家统计局>> 行政区划代码>>mysql数据格式 截图如下 行政区划mysql数据库文件下载:nation.zip 转载:http://www.sdhack.c ...

  6. dapper extensions (predicates)

    https://github.com/tmsmith/Dapper-Extensions/wiki/Predicates The predicate system in Dapper Extensio ...

  7. dapper 自定义数据库字段和代码中Model字段不一致时候的mapping方法

    namespace YourNamespace { /// <summary> /// Uses the Name value of the ColumnAttribute specifi ...

  8. 使用公钥登录SSL

    在本地生成密钥对 ssh-keygen -t rsa 如果不想设置密码,可以直接点击回车. 如果你想使用DSA可以用-t DSA替换. 确保远程计算机上用户目录下有.ssh目录 确保你的连接服务器上的 ...

  9. gc overhead limit exceeded

    eclipse-- gc overhead limit exceeded 修改内存不足的方法如下: Eclipse报错:gc overhead limit exceeded eclipse 原因是Ec ...

  10. C# 白话系列之——白话委托

    今天看到首页有个委托的文章,但大都写的太专业,而且没有实用的例子场景.正好昨天做了一个有关委托的功能,所以也来凑个热闹,用白话掰掰 一.委托是什么 我们都知道数据类型,简单点的如,想给一个变量赋值整数 ...